The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Overview

Likelihood-Free Inference in State-Space Models with Unknown Dynamics

This package contains the codes required to run the experiments in the paper. The simulators used for the State-Space Models in the experiments are implemented based on Engine for Likelihood-free Inference (ELFI) models.

Installation

We recommend using an Anaconda environment. To create and activate the conda environment with all dependencies installed, run:

conda create -c conda-forge --name env --file lfi-requirements.txt
conda activate env
pip install -e .
pip install sbi blitz-bayesian-pytorch stable_baselines3

For the GP-SSM and PR-SSM methods, we recommend creating a separate environment, in which one should install tensorflow, and then clone the 'custom_multiouput' branch of the GPflow from https://github.com/ialong/GPflow. Once GPflow is installed, one should clone GPt from https://github.com/ialong/GPt and execute 'experiments/run_gpssms.py', the code will complete 30 repletions of experiments with tractable likelihoods.

Running the experiments

The experiment scripts can be found in the 'experiments/' folder. To run the experiments on one of the considered SSM, one should run the 'run_experiment.py' script with the following arguments (options are in the parentheses): --sim ('lgssm', 'toy', 'sv', 'umap', 'gaze'), --meth ('bnn', 'qehvi', 'blr', 'SNPE', 'SNLE', 'SNRE'), --seed (any seed number), --budget (available simulation budget for each new state), --tasks (number of tasks considered/ moving window size for LMC-BNN, LMC-qEHVI and LMC-BLR methods). For instance:

python3 experiments/run_experiment.py --sim=lgssm --meth=bolfi --seed=0 --budget=2 --tasks=2

The results will be saved in the corresponding folders 'experiments/[sim]/[meth]-w[tasks]-s[budget]/'. To build plots and output the results, one should run 'collect_plots.py' script with specified arguments: --type ('inf' in case of evaluating state inference quality or 'traj' in case of evaluating the generated trajectories), --tasks (the number of tasks used by the methods). For example:

python3 experiments/collect_results.py --type=inf --tasks=2

The plots with experiment results will be stored in 'experiments/plots'.

Implementing custom simulators

The simulators for all experiments can be found in elfi/examples. Example implementations used in the paper are found in gaze_selection.py, umap_tasks.py, LGSSM.py (LG), dynamic_toy_model.py (NN), and stochastic_volatility.py (SV). To create a new SSM, implement a new class that inherits from elfi.DynamicProcess with custom generating function for observations, create_model(), and update_dynamic().

The code for all methods can be found in 'elfi/methods/dynamic_parameter_inference.py' and 'elfi/methods/bo/mogp.py'.

Citation


Owner
Alex Aushev
Alex Aushev
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
Code for "Learning to Regrasp by Learning to Place"

Learning2Regrasp Learning to Regrasp by Learning to Place, CoRL 2021. Introduction We propose a point-cloud-based system for robots to predict a seque

Shuo Cheng (成硕) 18 Aug 27, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021

LoFTR-with-train-script LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021 (with train script --- unofficial ---). About Megadepth

Nan Xiaohu 15 Nov 04, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI)

Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI) Preparation Clone the Synchronized-BatchNorm-P

Fangneng Zhan 12 Aug 10, 2022
GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

GUPNet This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection". citation If you find our wo

Yan Lu 103 Dec 28, 2022
Pytorch implementation of CoCon: A Self-Supervised Approach for Controlled Text Generation

COCON_ICLR2021 This is our Pytorch implementation of COCON. CoCon: A Self-Supervised Approach for Controlled Text Generation (ICLR 2021) Alvin Chan, Y

alvinchangw 79 Dec 18, 2022
An implementation of EWC with PyTorch

EWC.pytorch An implementation of Elastic Weight Consolidation (EWC), proposed in James Kirkpatrick et al. Overcoming catastrophic forgetting in neural

Ryuichiro Hataya 166 Dec 22, 2022
BARF: Bundle-Adjusting Neural Radiance Fields 🤮 (ICCV 2021 oral)

BARF 🤮 : Bundle-Adjusting Neural Radiance Fields Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey IEEE International Conference on Comp

Chen-Hsuan Lin 539 Dec 28, 2022
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
CellRank's reproducibility repository.

CellRank's reproducibility repository We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please e

Theis Lab 8 Oct 08, 2022
Official PyTorch implementation for paper "Efficient Two-Stage Detection of Human–Object Interactions with a Novel Unary–Pairwise Transformer"

UPT: Unary–Pairwise Transformers This repository contains the official PyTorch implementation for the paper Frederic Z. Zhang, Dylan Campbell and Step

Frederic Zhang 109 Dec 20, 2022
Oriented Response Networks, in CVPR 2017

Oriented Response Networks [Home] [Project] [Paper] [Supp] [Poster] Torch Implementation The torch branch contains: the official torch implementation

ZhouYanzhao 217 Dec 12, 2022
PyTorch implementation of popular datasets and models in remote sensing

PyTorch Remote Sensing (torchrs) (WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Re

isaac 222 Dec 28, 2022
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.

Graph-Based Local Trajectory Planner The graph-based local trajectory planner is python-based and comes with open interfaces as well as debug, visuali

TUM - Institute of Automotive Technology 160 Jan 04, 2023
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias

35 Nov 01, 2022
Official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION.

IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION This is the official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSU

电线杆 14 Dec 15, 2022