Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Overview

Finding Bipartite Components in Hypergraphs

This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", published in NeurIPS 2021. It provides an implementation of the proposed algorithm based on the new hypergraph diffusion process, as well as the baseline algorithm based on the clique reduction.

Below, you can find instructions for running the code which will reproduce the results reported in the paper.

Feel free to contact me with any questions or comments at [email protected].

Set-up

The code was written to work with Python 3.6, although other versions of Python 3 should also work. We recommend that you run inside a virtual environment.

To install the dependencies of this project, run

pip install -r requirements.txt

Viewing the visualisation

In order to demonstrate our algorithm, you can view the visualisation of the 2-graph constructed at each step by running

python show_visualisation.py

This example was used to create Figure 1 in the paper.

Experiments

In this section, we give instructions for running the experiments reported in the paper.

Penn Treebank Preprocessing

We are unfortunately not able to share the data used for the Penn Treebank experiment, and so we give instructions here for how to preprocess this data for use with our code. You will need to have your own access to the Penn Treebank corpus.

Follow the instructions in this repository, passing the --task pos command line option to generate the files train.tsv, test.tsv, and dev.tsv. Copy these three files to the data/nlp/penn-treebank directory.

Running the real-world experiments

To run the experiments on real-world data, you should run

python run_experiment.py {experiment_name}

where {experiment_name} is one of 'ptb', 'dblp', 'imdb', or 'wikipedia' to run the Penn Treebank, DBLP, IMDB and Wikipedia experiments respectively.

Running the synthetic experiments

To run an experiment on a single synthetic hypergraph, run

python run_experiment_synthetic.py {n} {r} {p} {q}

where {n} is the number of vertices in the hypergraph, {r} is the rank of the hypergraph, {p} is the probability of an edge inside a cluster, and {q} is the probability of an edge between clusters. Be careful not to set p or q to be too large. See the main paper for more information about the random hypergraph model. This will construct the hypergraph if needed, and report the performance of the diffusion algorithm and the clique algorithm on the constructed hypergraph.

Results

The full results from our experiments on synthetic hypergraphs are provided in the data/sbm/results directory, along with a Mathematica notebook for viewing them, and plotting the figures shown in the paper.

Owner
Peter Macgregor
Computer Science PhD Student, University of Edinburgh.
Peter Macgregor
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
Robocop is your personal mini voice assistant made using Python.

Robocop-VoiceAssistant To use this project, you should have python installed in your system. If you don't have python installed, install it beforehand

Sohil Khanduja 3 Feb 26, 2022
Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Oral)

CMT Code for paper Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Best Paper Award) [Paper] [Site] Directory Struc

Zhaokai Wang 198 Dec 27, 2022
PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN in PyTorch PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in READM

Taehoon Kim 1k Jan 04, 2023
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022) https://arxiv.org/abs/2203.08483 Unpaired image-to-image (I2I

Xueqi Hu 50 Dec 16, 2022
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
Romanian Automatic Speech Recognition from the ROBIN project

RobinASR This repository contains Robin's Automatic Speech Recognition (RobinASR) for the Romanian language based on the DeepSpeech2 architecture, tog

RACAI 10 Jan 01, 2023
CondNet: Conditional Classifier for Scene Segmentation

CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis

ycszen 31 Jul 22, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
A quantum game modeling of pandemic (QHack 2022)

Contributors: @JongheumJung, @YoonjaeChung, @GyunghunKim Abstract In the regime of a global pandemic, leaders around the world need to consider variou

Yoonjae Chung 8 Apr 03, 2022
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
🔥 Cannlytics-powered artificial intelligence 🤖

Cannlytics AI 🔥 Cannlytics-powered artificial intelligence 🤖 🏗️ Installation 🏃‍♀️ Quickstart 🧱 Development 🦾 Automation 💸 Support 🏛️ License ?

Cannlytics 3 Nov 11, 2022
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022