Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Overview

Finding Bipartite Components in Hypergraphs

This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", published in NeurIPS 2021. It provides an implementation of the proposed algorithm based on the new hypergraph diffusion process, as well as the baseline algorithm based on the clique reduction.

Below, you can find instructions for running the code which will reproduce the results reported in the paper.

Feel free to contact me with any questions or comments at [email protected].

Set-up

The code was written to work with Python 3.6, although other versions of Python 3 should also work. We recommend that you run inside a virtual environment.

To install the dependencies of this project, run

pip install -r requirements.txt

Viewing the visualisation

In order to demonstrate our algorithm, you can view the visualisation of the 2-graph constructed at each step by running

python show_visualisation.py

This example was used to create Figure 1 in the paper.

Experiments

In this section, we give instructions for running the experiments reported in the paper.

Penn Treebank Preprocessing

We are unfortunately not able to share the data used for the Penn Treebank experiment, and so we give instructions here for how to preprocess this data for use with our code. You will need to have your own access to the Penn Treebank corpus.

Follow the instructions in this repository, passing the --task pos command line option to generate the files train.tsv, test.tsv, and dev.tsv. Copy these three files to the data/nlp/penn-treebank directory.

Running the real-world experiments

To run the experiments on real-world data, you should run

python run_experiment.py {experiment_name}

where {experiment_name} is one of 'ptb', 'dblp', 'imdb', or 'wikipedia' to run the Penn Treebank, DBLP, IMDB and Wikipedia experiments respectively.

Running the synthetic experiments

To run an experiment on a single synthetic hypergraph, run

python run_experiment_synthetic.py {n} {r} {p} {q}

where {n} is the number of vertices in the hypergraph, {r} is the rank of the hypergraph, {p} is the probability of an edge inside a cluster, and {q} is the probability of an edge between clusters. Be careful not to set p or q to be too large. See the main paper for more information about the random hypergraph model. This will construct the hypergraph if needed, and report the performance of the diffusion algorithm and the clique algorithm on the constructed hypergraph.

Results

The full results from our experiments on synthetic hypergraphs are provided in the data/sbm/results directory, along with a Mathematica notebook for viewing them, and plotting the figures shown in the paper.

Owner
Peter Macgregor
Computer Science PhD Student, University of Edinburgh.
Peter Macgregor
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
An investigation project for SISR.

SISR-Survey An investigation project for SISR. This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learnin

Juncheng Li 79 Oct 20, 2022
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
Space Time Recurrent Memory Network - Pytorch

Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio

Phil Wang 50 Nov 07, 2021
A more easy-to-use implementation of KPConv

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 35 Dec 14, 2022
Official TensorFlow code for the forthcoming paper

~ Efficient-CapsNet ~ Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

Vittorio Mazzia 203 Jan 08, 2023
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
🔪 Elimination based Lightweight Neural Net with Pretrained Weights

ELimNet ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task Removed top layers from pretrained Efficient

snoop2head 4 Jul 12, 2022
Nest Protect integration for Home Assistant. This will allow you to integrate your smoke, heat, co and occupancy status real-time in HA.

Nest Protect integration for Home Assistant Custom component for Home Assistant to interact with Nest Protect devices via an undocumented and unoffici

Mick Vleeshouwer 175 Dec 29, 2022
Prometheus Exporter for data scraped from datenplattform.darmstadt.de

darmstadt-opendata-exporter Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format. Pull requests w

Martin Weinelt 2 Apr 12, 2022
CSE-519---Project - Job Title Analysis (Project for CSE 519 - Data Science Fundamentals)

A Multifaceted Approach to Job Title Analysis CSE 519 - Data Science Fundamentals Project Description Project consists of three parts: Salary Predicti

Jimit Dholakia 1 Jan 04, 2022
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

10 Sep 12, 2022
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
Simple and ready-to-use tutorials for TensorFlow

TensorFlow World To support maintaining and upgrading this project, please kindly consider Sponsoring the project developer. Any level of support is a

Amirsina Torfi 4.5k Dec 23, 2022
Gesture-controlled Video Game. Just swing your finger and play the game without touching your PC

Gesture Controlled Video Game Detailed Blog : https://www.analyticsvidhya.com/blog/2021/06/gesture-controlled-video-game/ Introduction This project is

Devbrat Anuragi 35 Jan 06, 2023
The official implementation of Autoregressive Image Generation using Residual Quantization (CVPR '22)

Autoregressive Image Generation using Residual Quantization (CVPR 2022) The official implementation of "Autoregressive Image Generation using Residual

Kakao Brain 529 Dec 30, 2022
Algorithmic encoding of protected characteristics and its implications on disparities across subgroups

Algorithmic encoding of protected characteristics and its implications on disparities across subgroups This repository contains the code for the paper

Team MIRA - BioMedIA 15 Oct 24, 2022