Official TensorFlow code for the forthcoming paper

Overview

arXiv PWC PWC License

~ Efficient-CapsNet ~

Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

This repository has been made for two primarly reasons:

  • open source the code (most of) developed during our "first-stage" research on capsules, summarized by the forthcoming article "Efficient-CapsNet: Capsule Network with Self-Attention Routing". The repository let you play with Efficient-CapsNet and let you set the base for your own experiments.
  • be an hub and a headlight in the cyberspace to spread to the machine learning comunity the intrinsic potential and value of capsule. However, albeit remarkable results achieved by capsule networks, we're fully aware that they're only limited to toy datasets. Nevertheless, there's a lot to make us think that with the right effort and collaboration of the scientific community, capsule based networks could really make a difference in the long run. For now, feel free to dive in our work :))

1.0 Getting Started

1.1 Installation

Python3 and Tensorflow 2.x are required and should be installed on the host machine following the official guide. Good luck with it!

  1. Clone this repository
    git clone https://github.com/EscVM/Efficient-CapsNet.git
  2. Install the required packages
    pip3 install -r requirements.txt

Peek inside the requirements file if you have everything already installed. Most of the dependencies are common libraries.

2.0 Efficient-CapsNet Notebooks

The repository provides two starting notebooks to make you confortable with our architecture. They all have the information and explanations to let you dive further in new research and experiments. The first one let you test Efficient-CapsNet over three different datasets. The repository is provided with some of the weights derived by our own experiments. On the other hand, the second one let you train the network from scratch. It's a very lightweight network so you don't need "Deep Mind" TPUs arsenal to train it. However, even if a GP-GPU is not compulsory, it's strongly suggested (No GPU, no deep learning, no party).

3.0 Original CapsNet Notebooks

It goes without saying that our work has been inspiered by Geoffrey Hinton and his article "Dynamic Routing Between Capsules". It's really an honor to build on his idea. Nevertheless, when we did our first steps in the capsule world, we were pretty disappointed in finding that all repositories/implementations were ultimately wrong in some aspects. So, we implemented everything from scratch, carefully following the original Sara's repository. However, our implementation, besides beeing written for the new TensorFlow 2 version, is much more easier and practical to use. Sara's one is really overcomplicated and too mazy that you can lost pretty easily.

As for the previous section we provide two notebooks, one for testing (weights have been derived from Sara's repository) and one for training.

Nevertheless, there's a really negative note (at least for us:)); as all other repositories that you can find on the web, also our one is not capable to achieve the scores reported in their paper. We really did our best, but there is no way to make the network achieve a score greater than 99.64% on MNIST. Exactly for this reason, weights provided in this repository are derived from their repository. Anyway, it's Geoffrey so we can excuse him.

4.0 Capsules Dimensions Perturbation Notebook

The network is trained with a reconstruction regularizer that is simply a fully connected network trained in conjuction with the main one. So, we can use it to visualize the inner capsules reppresentations. In particular, we should expect that a dimension of a digit capsule should learn to span the space of variations in the way digits of that class are instantiated. We can see what the individual dimensions represent by making use of the decoder network and injecting some noise to one of the dimensions of the main digit capsule layer that is predicting the class of the input.

So, we coded a practical notebook in which you can dynamically tweak whichever dimension you want of the capsule that is making the prediction (longest one).

Finally, if you don't have the necessary resources (GP-GPU holy grail) you can still try this interesting notebook out on Colab.

Citation

Use this bibtex if you enjoyed this repository and you want to cite it:

@article{mazzia2021efficient,
  title={Efficient-CapsNet: Capsule Network withSelf-Attention Routing},
  author={Mazzia, Vittorio and Salvetti, Francesco and Chiaberge, Marcello},
  year={2021},
  journal={arXiv preprint arXiv:2101.12491},
}
Owner
Vittorio Mazzia
Ph.D. Student in Machine Learning and Artificial Intelligence
Vittorio Mazzia
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
Domain Generalization with MixStyle, ICLR'21.

MixStyle This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle". The OpenReview link is https://openreview.net/forum?

Kaiyang 208 Dec 28, 2022
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

73 Jan 01, 2023
A convolutional recurrent neural network for classifying A/B phases in EEG signals recorded for sleep analysis.

CAP-Classification-CRNN A deep learning model based on Inception modules paired with gated recurrent units (GRU) for the classification of CAP phases

Apurva R. Umredkar 2 Nov 25, 2022
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
Learning to Stylize Novel Views

Learning to Stylize Novel Views [Project] [Paper] Contact: Hsin-Ping Huang ([ema

34 Nov 27, 2022
[AAAI 2022] Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation with Limited Annotation

A paper Introduction This is an official release of the paper Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation wit

Jiacheng Wang 14 Dec 08, 2022
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

349 Dec 08, 2022
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
Rational Activation Functions - Replacing Padé Activation Units

Rational Activations - Learnable Rational Activation Functions First introduce as PAU in Padé Activation Units: End-to-end Learning of Activation Func

<a href=[email protected]"> 38 Nov 22, 2022
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples This repository is the official implementation of paper [Qimera: Data-free Q

Kanghyun Choi 21 Nov 03, 2022
Implementation of the GBST block from the Charformer paper, in Pytorch

Charformer - Pytorch Implementation of the GBST (gradient-based subword tokenization) module from the Charformer paper, in Pytorch. The paper proposes

Phil Wang 105 Dec 26, 2022
Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

Hongqiang.Wang 2 Nov 01, 2021
Learning Time-Critical Responses for Interactive Character Control

Learning Time-Critical Responses for Interactive Character Control Abstract This code implements the paper Learning Time-Critical Responses for Intera

Movement Research Lab 227 Dec 31, 2022
Implementation of the Chamfer Distance as a module for pyTorch

Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.

Christian Diller 205 Jan 05, 2023
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Dominic Rampas 247 Dec 16, 2022
Racing line optimization algorithm in python that uses Particle Swarm Optimization.

Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi

Parsa Dahesh 6 Dec 14, 2022
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022
[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting

[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting [Paper] [Project Website] [Google Colab] We propose a method for converting a

Virginia Tech Vision and Learning Lab 6.2k Jan 01, 2023