AITUS - An atomatic notr maker for CYTUS

Related tags

Deep LearningAITUS
Overview

AITUS

an automatic note maker for CYTUS.

利用AI根据指定乐曲生成CYTUS游戏谱面。

效果展示:https://www.bilibili.com/video/BV1Lf4y1F7aq

这只是作者的一个初次尝试,欢迎感兴趣的小伙伴进行优化或提出新方法!

共享链接

下面的3、4部分介绍了AITUS的使用方法,比较繁琐,且需要安装许多软件。鉴于此,作者在这里设置了一个共享链接,用于分享AITUS创作的游戏谱面。

链接:https://pan.baidu.com/s/1dGaLOuBKdeXBRZt1NuP9WA?pwd=aicy 提取码:aicy

您可以私信给作者您想要创作谱面的乐曲,作者生成谱面后会上传到这个链接里。

前置准备

使用AITUS一共需要以下软件作为辅助:

  • 格式工厂(或其他音频文件格式转化软件)
  • MixMeister BPM Analyzer,用于获取乐曲bpm
  • Cylheim,CYTUS游戏谱面制作器
  • Python3
  • PyTorch2

使用说明

【step 1】

将乐曲转为wav格式。

【step 2】

使用软件【MixMeister BPM Analyzer】测量乐曲的bpm。

【step 3】

使用【Cylheim】创建空谱面,创建空谱面时需要导入乐曲、bpm等信息。创建好的谱面是一个json文件。该json文件的命名应与乐曲文件的命名相同。

【step 4】

将创建好的谱面json文件、乐曲wav文件、model下的四个pt文件、code下的【NoteMake.py】放在同一目录下,并修改【NoteMake.py】中如下图所示的乐曲信息:

image-20220119105537401

然后运行NoteMake.py,约5-10分钟后运行结束,得到生成的json谱面文件(命名与乐曲命名相同)。

【step 5】

用生成的json去替换原【Cylheim】项目下的json文件,然后打开【Cylheim】项目即可看见和演示生成的谱面。

原理简介

训练数据来自CYTUS

训练所用的乐曲和谱面信息来自CYTUS。

从音乐到图像

为了利用CNN,将读入的一段乐曲信号按顺序转化为若干80×80的图片,并根据谱面文件的信息给每张图打tag。

分工训练

为了生成游戏谱面,一共训练了四个模型:

ExistModel:判断一张图是否有key。

PosModel:如果一张图中有key,判断这个key的横坐标。

TypeModel:如果一张图中有key,判断这个key的类型(由于CYTUS1代只有click、hold、chain三种类型的key,因此AITUS目前也只考虑了这三种类型)。

TimeModel:如果一张图中对应的key是hold,判断这个hold的持续的时间。

一些调整

生成的谱面谱面并不那么如意,因此在【NoteMake.py】中还对模型的输出结果做了调整(详情请见代码)。

Owner
GradiusTwinbee
GradiusTwinbee
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio

Microsoft 247 Dec 25, 2022
Repositório criado para abrigar os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3

Curso em Vídeo - Exercícios de Python 3 Sobre o repositório Este repositório contém os notebooks com a listas de exercícios propostos pelo professor G

João Pedro Pereira 9 Oct 15, 2022
a morph transfer UGATIT for image translation.

Morph-UGATIT a morph transfer UGATIT for image translation. Introduction 中文技术文档 This is Pytorch implementation of UGATIT, paper "U-GAT-IT: Unsupervise

55 Nov 14, 2022
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
Ludwig Benchmarking Toolkit

Ludwig Benchmarking Toolkit The Ludwig Benchmarking Toolkit is a personalized benchmarking toolkit for running end-to-end benchmark studies across an

HazyResearch 17 Nov 18, 2022
i-RevNet Pytorch Code

i-RevNet: Deep Invertible Networks Pytorch implementation of i-RevNets. i-RevNets define a family of fully invertible deep networks, built from a succ

Jörn Jacobsen 378 Dec 06, 2022
Robotics environments

Robotics environments Details and documentation on these robotics environments are available in OpenAI's blog post and the accompanying technical repo

Farama Foundation 121 Dec 28, 2022
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022
"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

MEGVII Research 179 Jan 02, 2023
Code for reproducing our paper: LMSOC: An Approach for Socially Sensitive Pretraining

LMSOC: An Approach for Socially Sensitive Pretraining Code for reproducing the paper LMSOC: An Approach for Socially Sensitive Pretraining to appear a

Twitter Research 11 Dec 20, 2022
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

75 Dec 16, 2022
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN

Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo

Chenxu Peng 3 Nov 02, 2022
Towards Part-Based Understanding of RGB-D Scans

Towards Part-Based Understanding of RGB-D Scans (CVPR 2021) We propose the task of part-based scene understanding of real-world 3D environments: from

26 Nov 23, 2022
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
A spatial genome aligner for analyzing multiplexed DNA-FISH imaging data.

jie jie is a spatial genome aligner. This package parses true chromatin imaging signal from noise by aligning signals to a reference DNA polymer model

Bojing Jia 9 Sep 29, 2022
A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
Machine learning and Deep learning models, deploy on telegram (the best social media)

Semi Intelligent BOT The project involves : Classifying fake news Classifying objects such as aeroplane, automobile, bird, cat, deer, dog, frog, horse

MohammadReza Norouzi 5 Mar 06, 2022