QuanTaichi evaluation suite

Overview

QuanTaichi: A Compiler for Quantized Simulations (SIGGRAPH 2021)

Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang Dai, William T. Freeman, Fredo Durand

[Paper] [Video]

The QuanTaichi framework is now officially part of Taichi. This repo only contains examples.

Simulate more with less memory, using a quantization compiler.

High-resolution simulations can deliver great visual quality, but they are often limited by available memory. We present a compiler for physical simulation that can achieve both high performance and significantly reduced memory costs, by enabling flexible and aggressive quantization.

To achieve that, we implemented an extension of the type system in Taichi. Now, programmers can define custom data types using the following code:

i8 = ti.quant.int(bits=8, signed=True)
fixed12 = ti.quant.fixed(frac=12, signed=False, range=3.0)
cft16 = ti.quant.float(exp=5, frac=11, signed=True)

The compiler will automatically encode/decode numerical data to achieve an improved memory efficiency (storage & bandwidth). Since custom data types are not natively supported by hardware, we propose two useful types of bit adapters: Bit structs and Bit arrays to pack thses types into hardware supported types with bit width 8, 16, 32, 64. For example, The following code declears 2 fields with custom types, and materialized them into two 2D 4 x 2 arrays with Bit structs:

u4 = ti.quant.int(bits=4, signed=False)
i12 = ti.quant.int(bits=12, signed=True)
p = ti.field(dtype=u4)
q = ti.field(dtype=i12)
ti.root.dense(ti.ij, (4, 2)).bit_struct(num_bits=16).place(p, q)

The p and q fields are laid in an array of structure (AOS) order in memory. Note the containing bit struct of a (p[i, j], q[i, j]) tuple is 16-bit wide. For more details of the usage of our quantization type system, please refer to our paper or see the examples in this repo.

Under proper quantization, we achieve 8× higher memory efficiency on each Game of Life cell, 1.57× on each Eulerian fluid simulation voxel, and 1.7× on each material point method particle. To the best of our knowledge, this is the first time these high-resolution simulations can run on a single GPU. Our system achieves resolution, performance, accuracy, and visual quality simultaneously.

How to run

Install the latest Taichi first.

Install the latest Taichi by:

python3 -m pip install —U taichi

Game of Life (GoL)

gol_pic

To reproduce the GOL galaxy:

cd gol && python3 galaxy.py -a [cpu/cuda] -o output

We suggest you run the script using GPU (--arch cuda). Because to better observe the evolution of metapixels, we set the steps per frame to be 32768 which will take quite a while on CPUs.

To reproduce the super large scale GoL:

  1. Download the pattern quant_sim_meta.rle from our Google Drive and place it in the same folder with quant_sim.py

  2. Run the code

python3 quant_sim.py -a [cpu/cuda] -o output

For more details, please refer to this documentation.

MLS-MPM

mpm-pic

To test our system on hybrid Lagrangian-Eulerian methods where both particles and grids are used, we implemented the Moving Least Squares Material Point Method with G2P2G transfer.

To reproduce, please see the output of the following command:

cd mls-mpm
python3 -m demo.demo_quantized_simulation_letters --help

You can add -s flag for a quick visualization and you may need to wait for 30 frames to see letters falling down.

More details are in this documentation.

Eulerian Fluid

smoke_simulation

We developed a sparse-grid-based advection-reflection fluid solver to evaluate our system on grid-based physical simulators.

To reproduce the large scale smoke simulation demo, please first change the directory into eulerain_fluid, and run:

python3 run.py --demo [0/1] -o outputs

Set the arg of demo to 0 for the bunny demo and 1 for the flow demo. -o outputs means the set the output folder to outputs.

For more comparisons of this quantized fluid simulation, please refer to the documentation of this demo.

Microbenchmarks

To reproduce the experiments of microbenchmarks, please run

cd microbenchmarks
chmod +x run_microbenchmarks.sh
./run_microbenchmarks.sh

Please refer to this Readme to get more details.

Bibtex

@article{hu2021quantaichi,
  title={QuanTaichi: A Compiler for Quantized Simulations},
  author={Hu, Yuanming and Liu, Jiafeng and Yang, Xuanda and Xu, Mingkuan and Kuang, Ye and Xu, Weiwei and Dai, Qiang and Freeman, William T. and Durand, Frédo},
  journal={ACM Transactions on Graphics (TOG)},
  volume={40},
  number={4},
  year={2021},
  publisher={ACM}
}
Owner
Taichi Developers
Taichi Developers
Unimodal Face Classification with Multimodal Training

Unimodal Face Classification with Multimodal Training This is a PyTorch implementation of the following paper: Unimodal Face Classification with Multi

Wenbin Teng 3 Jul 06, 2022
Emulation and Feedback Fuzzing of Firmware with Memory Sanitization

BaseSAFE This repository contains the BaseSAFE Rust APIs, introduced by "BaseSAFE: Baseband SAnitized Fuzzing through Emulation". The example/ directo

Security in Telecommunications 138 Dec 16, 2022
Code for NeurIPS 2021 paper "Curriculum Offline Imitation Learning"

README The code is based on the ILswiss. To run the code, use python run_experiment.py --nosrun -e your YAML file -g gpu id Generally, run_experim

ApexRL 12 Mar 19, 2022
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022
A toy project using OpenCV and PyMunk

A toy project using OpenCV, PyMunk and Mediapipe the source code for my LindkedIn post It's just a toy project and I didn't write a documentation yet,

Amirabbas Asadi 82 Oct 28, 2022
Interactive Visualization to empower domain experts to align ML model behaviors with their knowledge.

An interactive visualization system designed to helps domain experts responsibly edit Generalized Additive Models (GAMs). For more information, check

InterpretML 83 Jan 04, 2023
An implementation of a sequence to sequence neural network using an encoder-decoder

Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a

Luke Tonin 195 Dec 17, 2022
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
Official repository of ICCV21 paper "Viewpoint Invariant Dense Matching for Visual Geolocalization"

Viewpoint Invariant Dense Matching for Visual Geolocalization: PyTorch implementation This is the implementation of the ICCV21 paper: G Berton, C. Mas

Gabriele Berton 44 Jan 03, 2023
基于深度强化学习的原神自动钓鱼AI

原神自动钓鱼AI由YOLOX, DQN两部分模型组成。使用迁移学习,半监督学习进行训练。 模型也包含一些使用opencv等传统数字图像处理方法实现的不可学习部分。

4.2k Jan 01, 2023
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

Ethan Tseng 39 Dec 05, 2022
Our VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks.

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. VMAgent is constructed based on one month r

56 Dec 12, 2022
This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search"

InvariantAncestrySearch This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search

Phillip Bredahl Mogensen 0 Feb 02, 2022
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
Automatic Idiomatic Expression Detection

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC) An Idiomatic identifier that detects the presence and span of idiomatic expressi

5 Jun 09, 2022
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022
This program will stylize your photos with fast neural style transfer.

Neural Style Transfer (NST) Using TensorFlow Demo TensorFlow TensorFlow is an end-to-end open source platform for machine learning. It has a comprehen

Ismail Boularbah 1 Aug 08, 2022