This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search"

Overview

InvariantAncestrySearch

This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search".

Structure of the repository

The repository is structured in the following manner:

  • In the folder /InvariantAncestrySearch there are two important files:
    • utils.py contains a class DataGenerator which we use for sampling SCMs and data from said sampled SCMs. This, can for instance be done by the sequence
    from InvariantAncestrySearch import DataGenerator
    
    SCM1 = DataGenerator(d = 10, N_interventions = 5, p_conn = 2 / 10, InterventionStrength = 1) # This is an SCM generator
    SCM1.SampleDAG()  # Generates a DAG with d = 10 predictor nodes, 5 interventions and roughly d + 1 edges between the (d + 1)-sized subgraph of (X, Y)
    SCM1.BuildCoefMatrix  # Samples coefficients for the linear assignments -- interventions have strength 1
    data1 = SCM1.MakeData(100)  # Generates 100 samples from SCM1
    
    SCM2 = DataGenerator(d = 6, N_interventions = 1, p_conn = 2 / 6, InterventionStrength = 0.5) # And this is also an SCM generator
    SCM2.SampleDAG()  # Generates a DAG with d = 6 predictor nodes, 1 intervention and roughly d + 1 edges between the (d + 1)-sized subgraph of (X, Y)
    SCM2.BuildCoefMatrix  # Samples coefficients for the linear assignments -- interventions have strength 1
    data2 = SCM2.MakeData(1000)  # Generates 1000 samples from SCM2
    
    • IASfunctions.py includes all relevant functions used in the scripts, e.g., to test for minimal invariance or compute the set of all minimally invariant sets. All functions are documentated.
  • In the folder /simulation_scripts there are scripts to reproduce all experiments performed in the paper. These too documentation inside them. The functions run out-of-the-box, if all necessary libraries are installed and do not need to be run in a certain order.
  • In the folder /output/ there are database files, saved from running the scripts in /simulation_scripts/. These contain the data used to make all figures in the paper and can be opened with the python library shelve.
  • The file requirements.txt contains info on which modules are required to run the code. Note also that an R installation is required as well as the R package dagitty
Owner
Phillip Bredahl Mogensen
I'm Phillip Bredahl Mogensen, a Ph.D. student in statistics at the University of Copenhagen
Phillip Bredahl Mogensen
Discord bot-CTFD-Thread-Parser - Discord bot CTFD-Thread-Parser

Discord bot CTFD-Thread-Parser Description: This tools is used to create automat

15 Mar 22, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

RE results graph visualization and company clustering Installation pip install -r requirements.txt python -m nltk.downloader stopwords python3.7 main.

Jieun Han 1 Oct 06, 2022
[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

UP-DETR: Unsupervised Pre-training for Object Detection with Transformers This is the official PyTorch implementation and models for UP-DETR paper: @a

dddzg 430 Dec 23, 2022
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022
PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment

logit-adj-pytorch PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment This code implements the paper: Long-tail Learning via

Chamuditha Jayanga 53 Dec 23, 2022
A model which classifies reviews as positive or negative.

SentiMent Analysis In this project I built a model to classify movie reviews fromn the IMDB dataset of 50K reviews. WordtoVec : Neural networks only w

Rishabh Bali 2 Feb 09, 2022
Segmentation for medical image.

EfficientSegmentation Introduction EfficientSegmentation is an open source, PyTorch-based segmentation framework for 3D medical image. Features A whol

68 Nov 28, 2022
DNA sequence classification by Deep Neural Network

DNA sequence classification by Deep Neural Network: Project Overview worked on the DNA sequence classification problem where the input is the DNA sequ

Mohammed Jawwadul Islam Fida 0 Aug 02, 2022
Multi-View Radar Semantic Segmentation

Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore

valeo.ai 37 Oct 25, 2022
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

Uncertainty Toolbox 1.4k Dec 28, 2022
In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021

In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021. Balestriero et

Sean M. Hendryx 1 Jan 27, 2022
A computer vision pipeline to identify the "icons" in Christian paintings

Christian-Iconography A computer vision pipeline to identify the "icons" in Christian paintings. A bit about iconography. Iconography is related to id

Rishab Mudliar 3 Jul 30, 2022
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"

Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http

chenm 253 Dec 08, 2022
EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

EncT5 (Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks About Finetune T5 model for classification & r

Jangwon Park 34 Jan 01, 2023
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 09, 2023
Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech | | | | 中文文档 This repository is the official PyTorch implementation of our IJCAI-2022

Zhenhui YE 116 Nov 24, 2022
Get started with Machine Learning with Python - An introduction with Python programming examples

Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all

Learn Python with Rune 130 Jan 02, 2023
Editing a Conditional Radiance Field

Editing Conditional Radiance Fields Project | Paper | Video | Demo Editing Conditional Radiance Fields Steven Liu, Xiuming Zhang, Zhoutong Zhang, Rich

Steven Liu 216 Dec 30, 2022
Deep Reinforced Attention Regression for Partial Sketch Based Image Retrieval.

DARP-SBIR Intro This repository contains the source code implementation for ICDM submission paper Deep Reinforced Attention Regression for Partial Ske

2 Jan 09, 2022