This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search"

Overview

InvariantAncestrySearch

This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search".

Structure of the repository

The repository is structured in the following manner:

  • In the folder /InvariantAncestrySearch there are two important files:
    • utils.py contains a class DataGenerator which we use for sampling SCMs and data from said sampled SCMs. This, can for instance be done by the sequence
    from InvariantAncestrySearch import DataGenerator
    
    SCM1 = DataGenerator(d = 10, N_interventions = 5, p_conn = 2 / 10, InterventionStrength = 1) # This is an SCM generator
    SCM1.SampleDAG()  # Generates a DAG with d = 10 predictor nodes, 5 interventions and roughly d + 1 edges between the (d + 1)-sized subgraph of (X, Y)
    SCM1.BuildCoefMatrix  # Samples coefficients for the linear assignments -- interventions have strength 1
    data1 = SCM1.MakeData(100)  # Generates 100 samples from SCM1
    
    SCM2 = DataGenerator(d = 6, N_interventions = 1, p_conn = 2 / 6, InterventionStrength = 0.5) # And this is also an SCM generator
    SCM2.SampleDAG()  # Generates a DAG with d = 6 predictor nodes, 1 intervention and roughly d + 1 edges between the (d + 1)-sized subgraph of (X, Y)
    SCM2.BuildCoefMatrix  # Samples coefficients for the linear assignments -- interventions have strength 1
    data2 = SCM2.MakeData(1000)  # Generates 1000 samples from SCM2
    
    • IASfunctions.py includes all relevant functions used in the scripts, e.g., to test for minimal invariance or compute the set of all minimally invariant sets. All functions are documentated.
  • In the folder /simulation_scripts there are scripts to reproduce all experiments performed in the paper. These too documentation inside them. The functions run out-of-the-box, if all necessary libraries are installed and do not need to be run in a certain order.
  • In the folder /output/ there are database files, saved from running the scripts in /simulation_scripts/. These contain the data used to make all figures in the paper and can be opened with the python library shelve.
  • The file requirements.txt contains info on which modules are required to run the code. Note also that an R installation is required as well as the R package dagitty
Owner
Phillip Bredahl Mogensen
I'm Phillip Bredahl Mogensen, a Ph.D. student in statistics at the University of Copenhagen
Phillip Bredahl Mogensen
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B

58 Dec 21, 2022
subpixel: A subpixel convnet for super resolution with Tensorflow

subpixel: A subpixel convolutional neural network implementation with Tensorflow Left: input images / Right: output images with 4x super-resolution af

Atrium LTS 2.1k Dec 23, 2022
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation Official PyTorch Implementation

: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the w

Yuval Nirkin 182 Dec 14, 2022
MIMO-UNet - Official Pytorch Implementation

MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-

Sungjin Cho 248 Jan 02, 2023
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
GUI for TOAD-GAN, a PCG-ML algorithm for Token-based Super Mario Bros. Levels.

If you are using this code in your own project, please cite our paper: @inproceedings{awiszus2020toadgan, title={TOAD-GAN: Coherent Style Level Gene

Maren A. 13 Dec 14, 2022
Research on Tabular Deep Learning (Python package & papers)

Research on Tabular Deep Learning For paper implementations, see the section "Papers and projects". rtdl is a PyTorch-based package providing a user-f

Yura Gorishniy 510 Dec 30, 2022
Count GitHub Stars ⭐

Count GitHub Stars per Day ⭐ Track GitHub stars per day over a date range to measure the open-source popularity of different repositories. Requirement

Ultralytics 20 Nov 20, 2022
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

1.4k Jan 05, 2023
CryptoFrog - My First Strategy for freqtrade

cryptofrog-strategies CryptoFrog - My First Strategy for freqtrade NB: (2021-04-20) You'll need the latest freqtrade develop branch otherwise you migh

Robert Davey 137 Jan 01, 2023
A pytorch-based deep learning framework for multi-modal 2D/3D medical image segmentation

A 3D multi-modal medical image segmentation library in PyTorch We strongly believe in open and reproducible deep learning research. Our goal is to imp

Adaloglou Nikolas 1.2k Dec 27, 2022
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API

Timbre Dissimilarity Metrics A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API Installation pip install -e . Usag

Ben Hayes 21 Jan 05, 2022
StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

3k Jan 08, 2023