Progressive Coordinate Transforms for Monocular 3D Object Detection

Overview

Progressive Coordinate Transforms for Monocular 3D Object Detection

This repository is the official implementation of PCT.

Introduction

In this paper, we propose a novel and lightweight approach, dubbed Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations for monocular 3D object detection. Specifically, a localization boosting mechanism with confidence-aware loss is introduced to progressively refine the localization prediction. In addition, semantic image representation is also exploited to compensate for the usage of patch proposals. Despite being lightweight and simple, our strategy allows us to establish a new state-of-the-art among the monocular 3D detectors on the competitive KITTI benchmark. At the same time, our proposed PCT shows great generalization to most coordinate-based 3D detection frameworks.

arch

Requirements

Installation

Download this repository (tested under python3.7, pytorch1.3.1 and ubuntu 16.04.7). There are also some dependencies like cv2, yaml, tqdm, etc., and please install them accordingly:

cd #root
pip install -r requirements

Then, you need to compile the evaluation script:

cd root/tools/kitti_eval
sh compile.sh

Prepare your data

First, you should download the KITTI dataset, and organize the data as follows (* indicates an empty directory to store the data generated in subsequent steps):


#ROOT
  |data
    |KITTI
      |2d_detections
      |ImageSets
      |pickle_files *
      |object
        |training
          |calib
          |image_2
          |label
          |depth *
          |pseudo_lidar (optional for Pseudo-LiDAR)*
          |velodyne (optional for FPointNet)
        |testing
          |calib
          |image_2
          |depth *
          |pseudo_lidar (optional for Pseudo-LiDAR)*
          |velodyne (optional for FPointNet)

Second, you need to prepare your depth maps and put them to data/KITTI/object/training/depth. For ease of use, we also provide the estimated depth maps (these data generated from the pretrained models provided by DORN and Pseudo-LiDAR).

Monocular (DORN) Stereo (PSMNet)
trainval(~1.6G), test(~1.6G) trainval(~2.5G)

Then, you need to generate image 2D features for the 2D bounding boxes and put them to data/KITTI/pickle_files/org. We train the 2D detector according to the 2D detector in RTM3D. You can also use your own 2D detector for training and inference.

Finally, generate the training data using provided scripts :

cd #root/tools/data_prepare
python patch_data_prepare_val.py --gen_train --gen_val --gen_val_detection --car_only
mv *.pickle ../../data/KITTI/pickle_files

Prepare Waymo dataset

We also provide Waymo Usage for monocular 3D detection.

Training

Move to the workplace and train the mode (also need to modify the path of pickle files in config file):

 cd #root
 cd experiments/pct
 python ../../tools/train_val.py --config config_val.yaml

Evaluation

Generate the results using the trained model:

 python ../../tools/train_val.py --config config_val.yaml --e

and evalute the generated results using:

../../tools/kitti_eval/evaluate_object_3d_offline_ap11 ../../data/KITTI/object/training/label_2 ./output

or

../../tools/kitti_eval/evaluate_object_3d_offline_ap40 ../../data/KITTI/object/training/label_2 ./output

we provide the generated results for evaluation due to the tedious process of data preparation process. Unzip the output.zip and then execute the above evaluation commonds. Result is:

Models [email protected]. [email protected] [email protected]
PatchNet + PCT 27.53 / 34.65 38.39 / 47.16 24.44 / 28.47

Acknowledgements

This code benefits from the excellent work PatchNet, and use the off-the-shelf models provided by DORN and RTM3D.

Citation

@article{wang2021pct,
  title={Progressive Coordinate Transforms for Monocular 3D Object Detection},
  author={Li Wang, Li Zhang, Yi Zhu, Zhi Zhang, Tong He, Mu Li, Xiangyang Xue},
  journal={arXiv preprint arXiv:2108.05793},
  year={2021}
}

Contact

For questions regarding PCT-3D, feel free to post here or directly contact the authors ([email protected]).

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

This repository contains datasets and baselines for benchmarking Chinese text recognition.

Benchmarking-Chinese-Text-Recognition This repository contains datasets and baselines for benchmarking Chinese text recognition. Please see the corres

FudanVI Lab 254 Dec 30, 2022
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
H&M Fashion Image similarity search with Weaviate and DocArray

H&M Fashion Image similarity search with Weaviate and DocArray This example shows how to do image similarity search using DocArray and Weaviate as Doc

Laura Ham 18 Aug 11, 2022
Easily pull telemetry data and create beautiful visualizations for analysis.

This repository is a work in progress. Anything and everything is subject to change. Porpo Table of Contents Porpo Table of Contents General Informati

Ryan Dawes 33 Nov 30, 2022
A Lightweight Experiment & Resource Monitoring Tool 📺

Lightweight Experiment & Resource Monitoring 📺 "Did I already run this experiment before? How many resources are currently available on my cluster?"

170 Dec 28, 2022
Text to Image Generation with Semantic-Spatial Aware GAN

text2image This repository includes the implementation for Text to Image Generation with Semantic-Spatial Aware GAN This repo is not completely. Netwo

CVDDL 124 Dec 30, 2022
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

Qintong Li 50 Dec 20, 2022
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai

125 Dec 23, 2022
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
This repository contains the map content ontology used in narrative cartography

Narrative-cartography-ontology This repository contains the map content ontology used in narrative cartography, which is associated with a submission

Weiming Huang 0 Oct 31, 2021
ML for NLP and Computer Vision.

Sparrow is our open-source ML product. It runs on Skipper MLOps infrastructure.

Katana ML 2 Nov 28, 2021
Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch

Reminder ST-GCN has transferred to MMSkeleton, and keep on developing as an flexible open source toolbox for skeleton-based human understanding. You a

sijie yan 1.1k Dec 25, 2022
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022
PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids The electric grid is a key enabling infrastructure for the a

Texas A&M Engineering Research 19 Jan 07, 2023
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

McGill NLP 27 Dec 02, 2022
A template repository for submitting a job to the Slurm Cluster installed at the DISI - University of Bologna

Cluster di HPC con GPU per esperimenti di calcolo (draft version 1.0) Per poter utilizzare il cluster il primo passo è abilitare l'account istituziona

20 Dec 16, 2022