This repository contains datasets and baselines for benchmarking Chinese text recognition.

Overview

Benchmarking-Chinese-Text-Recognition

This repository contains datasets and baselines for benchmarking Chinese text recognition. Please see the corresponding paper for more details regarding the datasets, baselines, the empirical study, etc.

Highlights

๐ŸŒŸ All datasets are transformed to lmdb format for convenient usage.

๐ŸŒŸ The experimental results of all baselines are available at link with format (index [pred] [gt]).

๐ŸŒŸ The code and trained weights of TransOCR (one of the baselines) are available at link for direct use.

Updates

Jan 3, 2022: This repo is made publicly available. The corresponding paper is available at arXiv.

Nov 26, 2021: We upload the lmdb datasets publicly to Google Drive and BaiduCloud.

Download

  • The lmdb scene, web and document datasets are available in BaiduCloud (psw:v2rm) and GoogleDrive.

  • For the handwriting setting, please first download it at SCUT-HCCDoc and divide it into training, validation, and testing sets following link.

  • We also collected HWDB2.0-2.2 and ICDAR2013 handwriting datasets from CASIA and ICDAR2013 competition for futher research. Datasets are available at BaiduCloud (psw:lfaq) and GoogleDrive.

Datasets

Alt text The image demonstrates the four datasets used in our benchmark including Scene, Web, Document, and Handwriting datasets, each of which is introduced next.

Scene Dataset

We first collect the publicly available scene datasets including RCTW, ReCTS, LSVT, ArT, CTW resulting in 636,455 samples, which are randomly shuffled and then divided at a ratio of 8:1:1 to construct the training, validation, and testing datasets. Details of each scene datasets are introduced as follows:

  • RCTW [1] provides 12,263 annotated Chinese text images from natural scenes. We derive 44,420 text lines from the training set and use them in our benchmark. The testing set of RCTW is not used as the text labels are not available.
  • ReCTS [2] provides 25,000 annotated street-view Chinese text images, mainly derived from natural signboards. We only adopt the training set and crop 107,657 text samples in total for our benchmark.
  • LSVT [3] is a large scale Chinese and English scene text dataset, providing 50,000 full-labeled (polygon boxes and text labels) and 400,000 partial-labeled (only one text instance each image) samples. We only utilize the full-labeled training set and crop 243,063 text line images for our benchmark.
  • ArT [4] contains text samples captured in natural scenes with various text layouts (e.g., rotated text and curved texts). Here we obtain 49,951 cropped text images from the training set, and use them in our benchmark.
  • CTW [5] contains annotated 30,000 street view images with rich diversity including planar, raised, and poorly-illuminated text images. Also, it provides not only character boxes and labels, but also character attributes like background complexity, appearance, etc. Here we crop 191,364 text lines from both the training and testing sets.

We combine all the subdatasets, resulting in 636,455 text samples. We randomly shuffle these samples and split them at a ratio of 8:1:1, leading to 509,164 samples for training, 63,645 samples for validation, and 63,646 samples for testing.

Web Dataset

To collect the web dataset, we utilize MTWI [6] that contains 20,000 Chinese and English web text images from 17 different categories on the Taobao website. The text samples are appeared in various scenes, typography and designs. We derive 140,589 text images from the training set, and manually divide them at a ratio of 8:1:1, resulting in 112,471 samples for training, 14,059 samples for validation, and 14,059 samples for testing.

Document Dataset

We use the public repository Text Render [7] to generate some document-style synthetic text images. More specifically, we uniformly sample the length of text varying from 1 to 15. The corpus comes from wiki, films, amazon, and baike. The dataset contains 500,000 in total and is randomly divided into training, validation, and testing sets with a proportion of 8:1:1 (400,000 v.s. 50,000 v.s. 50,000).

Handwriting Dataset

We collect the handwriting dataset based on SCUT-HCCDoc [8], which captures the Chinese handwritten image with cameras in unconstrained environments. Following the official settings, we derive 93,254 text lines for training and 23,389 for testing, respectively. To pursue more rigorous research, we manually split the original training set into two sets at a ratio of 4:1, resulting in 74,603 samples for training and 18,651 samples for validation. For convenience, we continue to use the original 23,389 samples for testing.

Overall, the amount of text samples for each dataset is shown as follows:

  Setting     Dataset     Sample Size     Setting     Dataset     Sample Size  
Scene Training 509,164 Web Training 112,471
Validation 63,645 Validation 14,059
Testing 63,646 Testing 14,059
Document Training 400,000 Handwriting Training 74,603
Validation 50,000 Validation 18,651
Testing 50,000 Testing 23,389

Baselines

We manually select seven representative methods as baselines, which will be introduced as follows.

  • CRNN [9] is a typical CTC-based method and it is widely used in academia and industry. It first sends the text image to a CNN to extract the image features, then adopts a two-layer LSTM to encode the sequential features. Finally, the output of LSTM is fed to a CTC (Connectionist Temperal Classification) decoder to maximize the probability of all the paths towards the ground truth.

  • ASTER [10] is a typical rectification-based method aiming at tackling irregular text images. It introduces a Spatial Transformer Network (STN) to rectify the given text image into a more recognizable appearance. Then the rectified text image is sent to a CNN and a two-layer LSTM to extract the features. In particular, ASTER takes advantage of the attention mechanism to predict the final text sequence.

  • MORAN [11] is a representative rectification-based method. It first adopts a multi-object rectification network (MORN) to predict rectified pixel offsets in a weak supervision way (distinct from ASTER that utilizes STN). The output pixel offsets are further used for generating the rectified image, which is further sent to the attention-based decoder (ASRN) for text recognition.

  • SAR [12] is a representative method that takes advantage of 2-D feature maps for more robust decoding. In particular, it is mainly proposed to tackle irregular texts. On one hand, SAR adopts more powerful residual blocks in the CNN encoder for learning stronger image representation. On the other hand, different from CRNN, ASTER, and MORAN compressing the given image into a 1-D feature map, SAR adopts 2-D attention on the spatial dimension of the feature maps for decoding, resulting in a stronger performance in curved and oblique texts.

  • SRN [13] is a representative semantics-based method that utilizes self-attention modules to correct the errors of predictions. It proposes a parallel visual attention module followed by a self-attention network to capture the global semantic features through multi-way parallel transmission, resulting in significant performance improvement towards the recognition of irregular texts.

  • SEED [14] is a representative semantics-based method. It introduces a semantics module to extract global semantics embedding and utilize it to initialize the first hidden state of the decoder. Specifically, while inheriting the structure of ASTER, the decoder of SEED intakes the semantic embedding to provide prior for the recognition process, thus showing superiority in recognizing low-quality text images.

  • TransOCR [15] is one of the representative Transformer-based methods. It is originally designed to provide text priors for the super-resolution task. It employs ResNet-34 as the encoder and self-attention modules as the decoder. Distinct from the RNN-based decoders, the self-attention modules are more efficient to capture semantic features of the given text images.

Here are the results of the baselines on four datasets. ACC / NED follow the percentage format and decimal format, respectively. Please click the hyperlinks to see the detailed experimental results, following the format of (index [pred] [gt]).

  Baseline     Year   Dataset
      Scene              Web          Document    Handwriting 
CRNN [9] 2016 53.4 / 0.734 54.5 / 0.736 97.5 / 0.994 46.4 / 0.840
ASTER [10] 2018 54.5 / 0.695 52.3 / 0.689 93.1 / 0.989 38.9 / 0.720
MORAN [11] 2019 51.8 / 0.686 49.9 / 0.682 95.8 / 0.991 39.7 / 0.761
SAR [12] 2019 62.5 / 0.785 54.3 / 0.725 93.8 / 0.987 31.4 / 0.655
SRN [13] 2020 60.1 / 0.778 52.3 / 0.706 96.7 / 0.995 18.0 / 0.512
SEED [14] 2020 49.6 / 0.661 46.3 / 0.637 93.7 / 0.990 32.1 / 0.674
TransOCR [15] 2021 63.3 / 0.802 62.3 / 0.787 96.9 / 0.994 53.4 / 0.849

References

Datasets

[1] Shi B, Yao C, Liao M, et al. ICDAR2017 competition on reading chinese text in the wild (RCTW-17). ICDAR, 2017.

[2] Zhang R, Zhou Y, Jiang Q, et al. Icdar 2019 robust reading challenge on reading chinese text on signboard. ICDAR, 2019.

[3] Sun Y, Ni Z, Chng C K, et al. ICDAR 2019 competition on large-scale street view text with partial labeling-RRC-LSVT. ICDAR, 2019.

[4] Chng C K, Liu Y, Sun Y, et al. ICDAR2019 robust reading challenge on arbitrary-shaped text-RRC-ArT. ICDAR, 2019.

[5] Yuan T L, Zhu Z, Xu K, et al. A large chinese text dataset in the wild. Journal of Computer Science and Technology, 2019.

[6] He M, Liu Y, Yang Z, et al. ICPR2018 contest on robust reading for multi-type web images. ICPR, 2018.

[7] text_render: https://github.com/Sanster/text_renderer

[8] Zhang H, Liang L, Jin L. SCUT-HCCDoc: A new benchmark dataset of handwritten Chinese text in unconstrained camera-captured documents. Pattern Recognition, 2020.

Methods

[9] Shi B, Bai X, Yao C. An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. TPAMI, 2016.

[10] Shi B, Yang M, Wang X, et al. Aster: An attentional scene text recognizer with flexible rectification. TPAMI, 2018.

[11] Luo C, Jin L, Sun Z. Moran: A multi-object rectified attention network for scene text recognition. PR, 2019.

[12] Li H, Wang P, Shen C, et al. Show, attend and read: A simple and strong baseline for irregular text recognition. AAAI, 2019.

[13] Yu D, Li X, Zhang C, et al. Towards accurate scene text recognition with semantic reasoning networks. CVPR, 2020.

[14] Qiao Z, Zhou Y, Yang D, et al. Seed: Semantics enhanced encoder-decoder framework for scene text recognition. CVPR, 2020.

[15] Chen J, Li B, Xue X. Scene Text Telescope: Text-Focused Scene Image Super-Resolution. CVPR, 2021.

Citation

Please consider citing this paper if you find it useful in your research. The bibtex-format citations of all relevant datasets and baselines are at link.

to be filled

Acknowledgements

We sincerely thank those researchers who collect the subdatasets for Chinese text recognition. Besides, we would like to thank Teng Fu, Nanxing Meng, Ke Niu and Yingjie Geng for their feedbacks on this benchmark.

Copyright

The team includes Jingye Chen, Haiyang Yu, Jianqi Ma, Mengnan Guan, Xixi Xu, Xiaocong Wang, and Shaobo Qu, advised by Prof. Bin Li and Prof. Xiangyang Xue.

Copyright ยฉ 2021 Fudan-FudanVI. All Rights Reserved.

Alt text

Owner
FudanVI Lab
Visual Intelligence Lab at Fudan University
FudanVI Lab
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022
Deep learned, hardware-accelerated 3D object pose estimation

Isaac ROS Pose Estimation Overview This repository provides NVIDIA GPU-accelerated packages for 3D object pose estimation. Using a deep learned pose e

NVIDIA Isaac ROS 41 Dec 18, 2022
The Video-based Accident Detection System built in Python

Accident-detection-system About the Project This Repository contains the Video-based Accident Detection System built in Python. Contributors Yukta Gop

SURYAVANSHI SNEHAL BALKRISHNA 50 Dec 07, 2022
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

dathuynh 26 Dec 14, 2022
Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant.

Marvis v1.0 Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant. About M.A.R.V.I.S. J.A.R.V.I.S. is a fictional character

Reda Mastouri 1 Dec 29, 2021
NeROIC: Neural Object Capture and Rendering from Online Image Collections

NeROIC: Neural Object Capture and Rendering from Online Image Collections This repository is for the source code for the paper NeROIC: Neural Object C

Snap Research 647 Dec 27, 2022
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Microsoft 1.3k Dec 30, 2022
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022
๐Ÿ”ฎ Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution.

convolver Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution. Created by Sean Higley

Sean Higley 1 Feb 23, 2022
Semantic segmentation task for ADE20k & cityscapse dataset, based on several models.

semantic-segmentation-tensorflow This is a Tensorflow implementation of semantic segmentation models on MIT ADE20K scene parsing dataset and Cityscape

HsuanKung Yang 83 Oct 13, 2022
Code for "Neural 3D Scene Reconstruction with the Manhattan-world Assumption" CVPR 2022 Oral

News 05/10/2022 To make the comparison on ScanNet easier, we provide all quantitative and qualitative results of baselines here, including COLMAP, COL

ZJU3DV 365 Dec 30, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering

UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering This repository holds all the code and data for our recent work on

Mohamed El Banani 118 Dec 06, 2022
Auditing Black-Box Prediction Models for Data Minimization Compliance

Data-Minimization-Auditor An auditing tool for model-instability based data minimization that is introduced in "Auditing Black-Box Prediction Models f

Bashir Rastegarpanah 2 Mar 24, 2022
Numerai tournament example scripts using NN and optuna

numerai_NN_example Numerai tournament example scripts using pytorch NN, lightGBM and optuna https://numer.ai/tournament Performance of my model based

Takahiro Maeda 12 Oct 10, 2022
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

25 Sep 21, 2022
Categorical Depth Distribution Network for Monocular 3D Object Detection

CaDDN CaDDN is a monocular-based 3D object detection method. This repository is based off of [OpenPCDet]. Categorical Depth Distribution Network for M

Toronto Robotics and AI Laboratory 289 Jan 05, 2023
Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"

MMO: Meta Multi-Objectivization for Software Configuration Tuning This repository contains the data and code for the following paper that is currently

0 Nov 17, 2021
PyTorch implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norรฉn 13.4k Jan 08, 2023