This repository contains datasets and baselines for benchmarking Chinese text recognition.

Overview

Benchmarking-Chinese-Text-Recognition

This repository contains datasets and baselines for benchmarking Chinese text recognition. Please see the corresponding paper for more details regarding the datasets, baselines, the empirical study, etc.

Highlights

🌟 All datasets are transformed to lmdb format for convenient usage.

🌟 The experimental results of all baselines are available at link with format (index [pred] [gt]).

🌟 The code and trained weights of TransOCR (one of the baselines) are available at link for direct use.

Updates

Jan 3, 2022: This repo is made publicly available. The corresponding paper is available at arXiv.

Nov 26, 2021: We upload the lmdb datasets publicly to Google Drive and BaiduCloud.

Download

  • The lmdb scene, web and document datasets are available in BaiduCloud (psw:v2rm) and GoogleDrive.

  • For the handwriting setting, please first download it at SCUT-HCCDoc and divide it into training, validation, and testing sets following link.

  • We also collected HWDB2.0-2.2 and ICDAR2013 handwriting datasets from CASIA and ICDAR2013 competition for futher research. Datasets are available at BaiduCloud (psw:lfaq) and GoogleDrive.

Datasets

Alt text The image demonstrates the four datasets used in our benchmark including Scene, Web, Document, and Handwriting datasets, each of which is introduced next.

Scene Dataset

We first collect the publicly available scene datasets including RCTW, ReCTS, LSVT, ArT, CTW resulting in 636,455 samples, which are randomly shuffled and then divided at a ratio of 8:1:1 to construct the training, validation, and testing datasets. Details of each scene datasets are introduced as follows:

  • RCTW [1] provides 12,263 annotated Chinese text images from natural scenes. We derive 44,420 text lines from the training set and use them in our benchmark. The testing set of RCTW is not used as the text labels are not available.
  • ReCTS [2] provides 25,000 annotated street-view Chinese text images, mainly derived from natural signboards. We only adopt the training set and crop 107,657 text samples in total for our benchmark.
  • LSVT [3] is a large scale Chinese and English scene text dataset, providing 50,000 full-labeled (polygon boxes and text labels) and 400,000 partial-labeled (only one text instance each image) samples. We only utilize the full-labeled training set and crop 243,063 text line images for our benchmark.
  • ArT [4] contains text samples captured in natural scenes with various text layouts (e.g., rotated text and curved texts). Here we obtain 49,951 cropped text images from the training set, and use them in our benchmark.
  • CTW [5] contains annotated 30,000 street view images with rich diversity including planar, raised, and poorly-illuminated text images. Also, it provides not only character boxes and labels, but also character attributes like background complexity, appearance, etc. Here we crop 191,364 text lines from both the training and testing sets.

We combine all the subdatasets, resulting in 636,455 text samples. We randomly shuffle these samples and split them at a ratio of 8:1:1, leading to 509,164 samples for training, 63,645 samples for validation, and 63,646 samples for testing.

Web Dataset

To collect the web dataset, we utilize MTWI [6] that contains 20,000 Chinese and English web text images from 17 different categories on the Taobao website. The text samples are appeared in various scenes, typography and designs. We derive 140,589 text images from the training set, and manually divide them at a ratio of 8:1:1, resulting in 112,471 samples for training, 14,059 samples for validation, and 14,059 samples for testing.

Document Dataset

We use the public repository Text Render [7] to generate some document-style synthetic text images. More specifically, we uniformly sample the length of text varying from 1 to 15. The corpus comes from wiki, films, amazon, and baike. The dataset contains 500,000 in total and is randomly divided into training, validation, and testing sets with a proportion of 8:1:1 (400,000 v.s. 50,000 v.s. 50,000).

Handwriting Dataset

We collect the handwriting dataset based on SCUT-HCCDoc [8], which captures the Chinese handwritten image with cameras in unconstrained environments. Following the official settings, we derive 93,254 text lines for training and 23,389 for testing, respectively. To pursue more rigorous research, we manually split the original training set into two sets at a ratio of 4:1, resulting in 74,603 samples for training and 18,651 samples for validation. For convenience, we continue to use the original 23,389 samples for testing.

Overall, the amount of text samples for each dataset is shown as follows:

  Setting     Dataset     Sample Size     Setting     Dataset     Sample Size  
Scene Training 509,164 Web Training 112,471
Validation 63,645 Validation 14,059
Testing 63,646 Testing 14,059
Document Training 400,000 Handwriting Training 74,603
Validation 50,000 Validation 18,651
Testing 50,000 Testing 23,389

Baselines

We manually select seven representative methods as baselines, which will be introduced as follows.

  • CRNN [9] is a typical CTC-based method and it is widely used in academia and industry. It first sends the text image to a CNN to extract the image features, then adopts a two-layer LSTM to encode the sequential features. Finally, the output of LSTM is fed to a CTC (Connectionist Temperal Classification) decoder to maximize the probability of all the paths towards the ground truth.

  • ASTER [10] is a typical rectification-based method aiming at tackling irregular text images. It introduces a Spatial Transformer Network (STN) to rectify the given text image into a more recognizable appearance. Then the rectified text image is sent to a CNN and a two-layer LSTM to extract the features. In particular, ASTER takes advantage of the attention mechanism to predict the final text sequence.

  • MORAN [11] is a representative rectification-based method. It first adopts a multi-object rectification network (MORN) to predict rectified pixel offsets in a weak supervision way (distinct from ASTER that utilizes STN). The output pixel offsets are further used for generating the rectified image, which is further sent to the attention-based decoder (ASRN) for text recognition.

  • SAR [12] is a representative method that takes advantage of 2-D feature maps for more robust decoding. In particular, it is mainly proposed to tackle irregular texts. On one hand, SAR adopts more powerful residual blocks in the CNN encoder for learning stronger image representation. On the other hand, different from CRNN, ASTER, and MORAN compressing the given image into a 1-D feature map, SAR adopts 2-D attention on the spatial dimension of the feature maps for decoding, resulting in a stronger performance in curved and oblique texts.

  • SRN [13] is a representative semantics-based method that utilizes self-attention modules to correct the errors of predictions. It proposes a parallel visual attention module followed by a self-attention network to capture the global semantic features through multi-way parallel transmission, resulting in significant performance improvement towards the recognition of irregular texts.

  • SEED [14] is a representative semantics-based method. It introduces a semantics module to extract global semantics embedding and utilize it to initialize the first hidden state of the decoder. Specifically, while inheriting the structure of ASTER, the decoder of SEED intakes the semantic embedding to provide prior for the recognition process, thus showing superiority in recognizing low-quality text images.

  • TransOCR [15] is one of the representative Transformer-based methods. It is originally designed to provide text priors for the super-resolution task. It employs ResNet-34 as the encoder and self-attention modules as the decoder. Distinct from the RNN-based decoders, the self-attention modules are more efficient to capture semantic features of the given text images.

Here are the results of the baselines on four datasets. ACC / NED follow the percentage format and decimal format, respectively. Please click the hyperlinks to see the detailed experimental results, following the format of (index [pred] [gt]).

  Baseline     Year   Dataset
      Scene              Web          Document    Handwriting 
CRNN [9] 2016 53.4 / 0.734 54.5 / 0.736 97.5 / 0.994 46.4 / 0.840
ASTER [10] 2018 54.5 / 0.695 52.3 / 0.689 93.1 / 0.989 38.9 / 0.720
MORAN [11] 2019 51.8 / 0.686 49.9 / 0.682 95.8 / 0.991 39.7 / 0.761
SAR [12] 2019 62.5 / 0.785 54.3 / 0.725 93.8 / 0.987 31.4 / 0.655
SRN [13] 2020 60.1 / 0.778 52.3 / 0.706 96.7 / 0.995 18.0 / 0.512
SEED [14] 2020 49.6 / 0.661 46.3 / 0.637 93.7 / 0.990 32.1 / 0.674
TransOCR [15] 2021 63.3 / 0.802 62.3 / 0.787 96.9 / 0.994 53.4 / 0.849

References

Datasets

[1] Shi B, Yao C, Liao M, et al. ICDAR2017 competition on reading chinese text in the wild (RCTW-17). ICDAR, 2017.

[2] Zhang R, Zhou Y, Jiang Q, et al. Icdar 2019 robust reading challenge on reading chinese text on signboard. ICDAR, 2019.

[3] Sun Y, Ni Z, Chng C K, et al. ICDAR 2019 competition on large-scale street view text with partial labeling-RRC-LSVT. ICDAR, 2019.

[4] Chng C K, Liu Y, Sun Y, et al. ICDAR2019 robust reading challenge on arbitrary-shaped text-RRC-ArT. ICDAR, 2019.

[5] Yuan T L, Zhu Z, Xu K, et al. A large chinese text dataset in the wild. Journal of Computer Science and Technology, 2019.

[6] He M, Liu Y, Yang Z, et al. ICPR2018 contest on robust reading for multi-type web images. ICPR, 2018.

[7] text_render: https://github.com/Sanster/text_renderer

[8] Zhang H, Liang L, Jin L. SCUT-HCCDoc: A new benchmark dataset of handwritten Chinese text in unconstrained camera-captured documents. Pattern Recognition, 2020.

Methods

[9] Shi B, Bai X, Yao C. An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. TPAMI, 2016.

[10] Shi B, Yang M, Wang X, et al. Aster: An attentional scene text recognizer with flexible rectification. TPAMI, 2018.

[11] Luo C, Jin L, Sun Z. Moran: A multi-object rectified attention network for scene text recognition. PR, 2019.

[12] Li H, Wang P, Shen C, et al. Show, attend and read: A simple and strong baseline for irregular text recognition. AAAI, 2019.

[13] Yu D, Li X, Zhang C, et al. Towards accurate scene text recognition with semantic reasoning networks. CVPR, 2020.

[14] Qiao Z, Zhou Y, Yang D, et al. Seed: Semantics enhanced encoder-decoder framework for scene text recognition. CVPR, 2020.

[15] Chen J, Li B, Xue X. Scene Text Telescope: Text-Focused Scene Image Super-Resolution. CVPR, 2021.

Citation

Please consider citing this paper if you find it useful in your research. The bibtex-format citations of all relevant datasets and baselines are at link.

to be filled

Acknowledgements

We sincerely thank those researchers who collect the subdatasets for Chinese text recognition. Besides, we would like to thank Teng Fu, Nanxing Meng, Ke Niu and Yingjie Geng for their feedbacks on this benchmark.

Copyright

The team includes Jingye Chen, Haiyang Yu, Jianqi Ma, Mengnan Guan, Xixi Xu, Xiaocong Wang, and Shaobo Qu, advised by Prof. Bin Li and Prof. Xiangyang Xue.

Copyright © 2021 Fudan-FudanVI. All Rights Reserved.

Alt text

Owner
FudanVI Lab
Visual Intelligence Lab at Fudan University
FudanVI Lab
A Repository of Community-Driven Natural Instructions

A Repository of Community-Driven Natural Instructions TLDR; this repository maintains a community effort to create a large collection of tasks and the

AI2 244 Jan 04, 2023
PyTorch implementation of DreamerV2 model-based RL algorithm

PyDreamer Reimplementation of DreamerV2 model-based RL algorithm in PyTorch. The official DreamerV2 implementation can be found here. Features ... Run

118 Dec 15, 2022
Data Engineering ZoomCamp

Data Engineering ZoomCamp I'm partaking in a Data Engineering Bootcamp / Zoomcamp and will be tracking my progress here. I can't promise these notes w

Aaron 61 Jan 06, 2023
A simple tutoral for error correction task, based on Pytorch

gramcorrector A simple tutoral for error correction task, based on Pytorch Grammatical Error Detection (sentence-level) a binary sequence-based classi

peiyuan_gong 8 Dec 03, 2022
NAS Benchmark in "Prioritized Architecture Sampling with Monto-Carlo Tree Search", CVPR2021

NAS-Bench-Macro This repository includes the benchmark and code for NAS-Bench-Macro in paper "Prioritized Architecture Sampling with Monto-Carlo Tree

35 Jan 03, 2023
It's final year project of Diploma Engineering. This project is based on Computer Vision.

Face-Recognition-Based-Attendance-System It's final year project of Diploma Engineering. This project is based on Computer Vision. Brief idea about ou

Neel 10 Nov 02, 2022
Age Progression/Regression by Conditional Adversarial Autoencoder

Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE) TensorFlow implementation of the algorithm in the paper Age Progression/Regre

Zhifei Zhang 603 Dec 22, 2022
TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling

TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling This is the official code release for the paper 'TiP-Adapter: Training-fre

peng gao 189 Jan 04, 2023
PyTorch-based framework for Deep Hedging

PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien

139 Dec 30, 2022
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022
Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models

Blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models.

Rich 4.5k Jan 07, 2023
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
StellarGraph - Machine Learning on Graphs

StellarGraph Machine Learning Library StellarGraph is a Python library for machine learning on graphs and networks. Table of Contents Introduction Get

S T E L L A R 2.6k Jan 05, 2023
Art Project "Schrödinger's Game of Life"

Repo of the project "Team Creative Quantum AI: Schrödinger's Game of Life" Installation new conda env: conda create --name qcml python=3.8 conda activ

ℍ◮ℕℕ◭ℍ ℝ∈ᛔ∈ℝ 2 Sep 15, 2022
A library for graph deep learning research

Documentation | Paper [JMLR] | Tutorials | Benchmarks | Examples DIG: Dive into Graphs is a turnkey library for graph deep learning research. Why DIG?

DIVE Lab, Texas A&M University 1.3k Jan 01, 2023
[CVPR 2022] Thin-Plate Spline Motion Model for Image Animation.

[CVPR2022] Thin-Plate Spline Motion Model for Image Animation Source code of the CVPR'2022 paper "Thin-Plate Spline Motion Model for Image Animation"

yoyo-nb 1.4k Dec 30, 2022
The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.

Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compl

MIC-DKFZ 40 Dec 18, 2022
Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
Sharpness-Aware Minimization for Efficiently Improving Generalization

Sharpness-Aware-Minimization-TensorFlow This repository provides a minimal implementation of sharpness-aware minimization (SAM) (Sharpness-Aware Minim

Sayak Paul 54 Dec 08, 2022