Open source Python implementation of the HDR+ photography pipeline

Overview

hdrplus-python

Open source Python implementation of the HDR+ photography pipeline, originally developped by Google and presented in a 2016 article. The finishing pipeline is simplified and of lesser quality than the one described in the original publication.

For an interactive demo and the associated article, An Analysis and Implementation of the HDR+ Burst Denoising Method, check out Image Processing On Line

Note: A C++ / Halide implementation by different authors is available here.

Installation Instructions

All the libraries necessary to run the code are listed in the hdrplus.yml Conda environment file. Simply run

conda env create -f hdrplus.yml

from a command window to install a functional environment.

File Contents and Provided Files

All source code containing algorithm functions is located within the package/algorithm folder, except some optional visualization functions located in package/visualization/vis.py

Scripts to run the algorithm are located at the root of the repo.

Running the Code

Two scripts are provided to either run the algorithm on a single burst (runHdrplus.py) or on a series of bursts all within the same parent folder (runHdrplus_multiple.py).

Examples of use:

python runHdrplus.py -i ./test_data/33TJ_20150606_224837_294 -o ./results_test1 -m full -v 2
python runHdrplus_multiple.py -i ./test_data -o ./results_test2 -m full

You can run the algorithm in three modes (-m command argument):

  • full:
    • required inputs (per burst folder): all raw .dng burst files and a single reference_frame.txt file
    • outputs (per burst folder): 3 .jpg images: final image X_final.jpg + minimally processed versions of the reference and merged image X_reference_gamma.jpg X_merged_gamma.jpg
  • align:
    • required inputs: all raw .dng burst files and a single reference_frame.txt files
    • outputs: a .dng file (copy of the reference image) + 2 numpy files: X_aligned_tiles.npy and X_padding.npy
  • merge:
    • required inputs: (obtained from align mode) a single .dng file (for metadata of the reference image) + 2 numpy files X_aligned_tiles.npy and X_padding.npy
    • outputs: a .dng file (copy of the reference image) + 1 numpy file: X_merged_bayer.npy
  • finish:
    • required inputs: (obtained from merge mode) a single .dng file (for metadata of the reference image) + 1 numpy file (for actual pixel values) X_merged_bayer.npy
    • outputs: final image X_final.jpg You can also change the values of the 'write___' dictionary items in params.py to change the kind of files dumped in each mode (at your own risk).

A helper script for the minimal processing of raw .dng files into .png/.jpg files (e.g. for the visualization of input images) is also included in the code: all_dngs_to_png.py

Test Data

1 burst can be found in the test_data folder (each burst being in its own subfolder) Feel free to add your own data. The structure of a burst folder must be the following:

  • the burst name is specified by the name of the folder itself
  • burst images must be stored as .dng files (most proprietary raw images formats can be turned to DNG using Adobe DNG Converter
  • image files must be named the following way: commonpart<X>.dng, where <X> gives an indication of the frame number (eg payload_N000.dng, payload_N001.dng / G0140178.dng, G0140179.dng)
  • you can specify the reference frame by putting a zero-indexed number inside a reference_frame.txt file (i.e. 0 for the 1st frame)

Additional data can be downloaded via the following links:

COPYRIGHT AND LICENSE INFORMATION

Copyright (c) 2021 Antoine Monod

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License along with this program. If not, see http://www.gnu.org/licenses/.

This file implements an algorithm possibly linked to the patent US9077913B2. This file is made available for the exclusive aim of serving as scientific tool to verify the soundness and completeness of the algorithm description. Compilation, execution and redistribution of this file may violate patents rights in certain countries. The situation being different for every country and changing over time, it is your responsibility to determine which patent rights restrictions apply to you before you compile, use, modify, or redistribute this file. A patent lawyer is qualified to make this determination. If and only if they don't conflict with any patent terms, you can benefit from the following license terms attached to this file.

Owner
PhD Student in applied mathematics (image processing, deep learning)
Latent Execution for Neural Program Synthesis

Latent Execution for Neural Program Synthesis This repo provides the code to replicate the experiments in the paper Xinyun Chen, Dawn Song, Yuandong T

Xinyun Chen 16 Oct 02, 2022
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI 2022)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Contextualized Perturbation for Textual Adversarial Attack Introduction This is a PyTorch implementation of Contextualized Perturbation for Textual Ad

cookielee77 30 Jan 01, 2023
Simple Dynamic Batching Inference

Simple Dynamic Batching Inference 解决了什么问题? 众所周知,Batch对于GPU上深度学习模型的运行效率影响很大。。。 是在Inference时。搜索、推荐等场景自带比较大的batch,问题不大。但更多场景面临的往往是稀碎的请求(比如图片服务里一次一张图)。 如果

116 Jan 01, 2023
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
Lux AI environment interface for RLlib multi-agents

Lux AI interface to RLlib MultiAgentsEnv For Lux AI Season 1 Kaggle competition. LuxAI repo RLlib-multiagents docs Kaggle environments repo Please let

Jaime 12 Nov 07, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
Pytorch library for fast transformer implementations

Transformers are very successful models that achieve state of the art performance in many natural language tasks

Idiap Research Institute 1.3k Dec 30, 2022
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Ahmed Gad 1.1k Dec 26, 2022
PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Gated Multiple Feedback Network for Image Super-Resolution This repository contains the PyTorch implementation for the proposed GMFN [arXiv]. The fram

Qilei Li 66 Nov 03, 2022
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation

LAVT: Language-Aware Vision Transformer for Referring Image Segmentation Where we are ? 12.27 目前和原论文仍有1%左右得差距,但已经力压很多SOTA了 ckpt__448_epoch_25.pth mIoU

zichengsaber 60 Dec 11, 2022
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
Chainer implementation of recent GAN variants

Chainer-GAN-lib This repository collects chainer implementation of state-of-the-art GAN algorithms. These codes are evaluated with the inception score

399 Oct 23, 2022