EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

Overview

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

Paper: EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale submitted to IEEE Robotics and Automation Letters (RA-L) (ArXiv)

Jacek Komorowski, Monika Wysoczanska, Tomasz Trzcinski

Warsaw University of Technology

What's new

  • [2021-10-24] Evaluation code and pretrained models released.

Our other projects

  • MinkLoc3D: Point Cloud Based Large-Scale Place Recognition (WACV 2021): MinkLoc3D
  • MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition (IJCNN 2021): MinkLoc++
  • Large-Scale Topological Radar Localization Using Learned Descriptors (ICONIP 2021): RadarLoc

Introduction

The paper presents a deep neural network-based method for global and local descriptors extraction from a point cloud acquired by a rotating 3D LiDAR sensor. The descriptors can be used for two-stage 6DoF relocalization. First, a course position is retrieved by finding candidates with the closest global descriptor in the database of geo-tagged point clouds. Then, 6DoF pose between a query point cloud and a database point cloud is estimated by matching local descriptors and using a robust estimator such as RANSAC. Our method has a simple, fully convolutional architecture and uses a sparse voxelized representation of the input point cloud. It can efficiently extract a global descriptor and a set of keypoints with their local descriptors from large point clouds with tens of thousand points.

Citation

If you find this work useful, please consider citing:

Environment and Dependencies

Code was tested using Python 3.8 with PyTorch 1.9.1 and MinkowskiEngine 0.5.4 on Ubuntu 20.04 with CUDA 10.2. Note: CUDA 11.1 is not recommended as there are some issues with MinkowskiEngine 0.5.4 on CUDA 11.1.

The following Python packages are required:

  • PyTorch (version 1.9.1)
  • MinkowskiEngine (version 0.5.4)
  • pytorch_metric_learning (version 0.9.99 or above)
  • wandb

Modify the PYTHONPATH environment variable to include absolute path to the project root folder:

export PYTHONPATH=$PYTHONPATH:/home/.../Egonn

Datasets

EgoNN is trained and evaluated using the following datasets:

  • MulRan dataset: Sejong traversal is used. The traversal is split into training and evaluation part link
  • Apollo-SouthBay dataset: SunnyvaleBigLoop trajectory is used for evaluation, other 5 trajectories (BaylandsToSeafood, ColumbiaPark, Highway237, MathildaAVE, SanJoseDowntown) are used for training link
  • Kitti dataset: Sequence 00 is used for evaluation link

First, you need to download datasets:

  • For MulRan dataset you need to download ground truth data (*.csv) and LiDAR point clouds (Ouster.zip) for traversals: Sejong01 and Sejong02 (link).
  • Download Apollo-SouthBay dataset using the download link on the dataset website (link).
  • Download Kitti odometry dataset (calibration files, ground truth poses, Velodyne laser data) (link).

After loading datasets you need to generate training pickles for the network training and evaluation pickles for model evaluation.

Training pickles generation

Generating training tuples is very time consuming, as ICP is used to refine the ground truth poses between each pair of neighbourhood point clouds.

cd datasets/mulran
python generate_training_tuples.py --dataset_root <mulran_dataset_root_path>

cd ../southbay
python generate_training_tuples.py --dataset_root <apollo_southbay_dataset_root_path>
Evaluation pickles generation
cd datasets/mulran
python generate_evaluation_sets.py --dataset_root <mulran_dataset_root_path>

cd ../southbay
python generate_evaluation_sets.py --dataset_root <apollo_southbay_dataset_root_path>

cd ../kitti
python generate_evaluation_sets.py --dataset_root <kitti_dataset_root_path>

Training (training code will be released after the paper acceptance)

First, download datasets and generate training and evaluation pickles as described above. Edit the configuration file config_egonn.txt. Set dataset_folder parameter to point to the dataset root folder. Modify batch_size_limit and secondary_batch_size_limit parameters depending on available GPU memory. Default limits requires at least 11GB of GPU RAM.

To train the EgoNN model, run:

cd training

python train.py --config ../config/config_egonn.txt --model_config ../models/egonn.txt 

Pre-trained Model

EgoNN model trained (on training splits of MulRan and Apollo-SouthBay datasets) is available in weights/model_egonn_20210916_1104.pth folder.

Evaluation

To evaluate a pretrained model run below commands. Ground truth poses between different traversals in all three datasets are slightly misaligned. To reproduce results from the paper, use --icp_refine option to refine ground truth poses using ICP.

cd eval

# To evaluate on test split of Mulran dataset
python evaluate.py --dataset_root <dataset_root_path> --dataset_type mulran --eval_set test_Sejong01_Sejong02.pickle --model_config ../models/egonn.txt --weights ../weights/model_egonn_20210916_1104.pth --icp_refine

# To evaluate on test split of Apollo-SouthBay dataset
python evaluate.py --dataset_root <dataset_root_path> --dataset_type southbay --eval_set test_SunnyvaleBigloop_1.0_5.pickle --model_config ../models/egonn.txt --weights ../weights/model_egonn_20210916_1104.pth --icp_refine

# To evaluate on test split of KITTI dataset
python evaluate.py --dataset_root <dataset_root_path> --dataset_type kitti --eval_set kitti_00_eval.pickle --model_config ../models/egonn.txt --weights ../weights/model_egonn_20210916_1104.pth --icp_refine

Results

EgoNN performance...

Visualizations

Visualizations of our keypoint detector results. On the left, we show 128 keypoints with the lowest saliency uncertainty (red dots). On the right, 128 keypoints with the highest uncertainty (yellow dots).

Successful registration of point cloud pairs from KITTI dataset gathered during revisiting the same place from different directions. On the left we show keypoint correspondences (RANSAC inliers) found during 6DoF pose estimation with RANSAC. On the right we show point clouds aligned using estimated poses.

License

Our code is released under the MIT License (see LICENSE file for details).

Perform zero-order Hankel Transform for an 1D array (float or real valued).

perform zero-order Hankel Transform for an 1D array (float or real valued). An discrete form of Parseval theorem is guaranteed. Suit for iterative problems.

1 Jan 17, 2022
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning

Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu

Costas Mavromatis 21 Dec 03, 2022
Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis [Paper] [Online Demo] The following results are obtained by our SCUNet with purely syn

Kai Zhang 312 Jan 07, 2023
Attempt at implementation of a simple GAN using Keras

Simple GAN This is my attempt to make a wrapper class for a GAN in keras which can be used to abstract the whole architecture process. Simple GAN Over

Deven96 7 May 23, 2019
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
Talk covering the features of skorch

Skorch Talk Skorch - A Union of Scikit-learn and PyTorch Presentation The slides can be downloaded at: download link. Google Colab Part One - MNIST Pa

Thomas J. Fan 3 Oct 20, 2020
ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

ALFRED A Benchmark for Interpreting Grounded Instructions for Everyday Tasks Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,

ALFRED 204 Dec 15, 2022
TLDR: Twin Learning for Dimensionality Reduction

TLDR (Twin Learning for Dimensionality Reduction) is an unsupervised dimensionality reduction method that combines neighborhood embedding learning with the simplicity and effectiveness of recent self

NAVER 105 Dec 28, 2022
The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution.

WSRGlow The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution. Audio sa

Kexun Zhang 96 Jan 03, 2023
SPTAG: A library for fast approximate nearest neighbor search

SPTAG: A library for fast approximate nearest neighbor search SPTAG SPTAG (Space Partition Tree And Graph) is a library for large scale vector approxi

Microsoft 4.3k Jan 01, 2023
Deep Learning Slide Captcha

滑动验证码深度学习识别 本项目使用深度学习 YOLOV3 模型来识别滑动验证码缺口,基于 https://github.com/eriklindernoren/PyTorch-YOLOv3 修改。 只需要几百张缺口标注图片即可训练出精度高的识别模型,识别效果样例: 克隆项目 运行命令: git cl

Python3WebSpider 55 Jan 02, 2023
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 09, 2022
Pytorch port of Google Research's LEAF Audio paper

leaf-audio-pytorch Pytorch port of Google Research's LEAF Audio paper published at ICLR 2021. This port is not completely finished, but the Leaf() fro

Dennis Fedorishin 80 Oct 31, 2022
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Kin-Yiu, Wong 1.8k Jan 04, 2023
PyTorch wrapper for Taichi data-oriented class

Stannum PyTorch wrapper for Taichi data-oriented class PRs are welcomed, please see TODOs. Usage from stannum import Tin import torch data_oriented =

86 Dec 23, 2022
Code for the paper "Adapting Monolingual Models: Data can be Scarce when Language Similarity is High"

Wietse de Vries • Martijn Bartelds • Malvina Nissim • Martijn Wieling Adapting Monolingual Models: Data can be Scarce when Language Similarity is High

Wietse de Vries 5 Aug 02, 2021
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
Deep Learning Specialization by Andrew Ng, deeplearning.ai.

Deep Learning Specialization on Coursera Master Deep Learning, and Break into AI This is my personal projects for the course. The course covers deep l

Engen 1.5k Jan 07, 2023
Some simple programs built in Python: webcam with cv2 that detects eyes and face, with grayscale filter

Programas en Python Algunos programas simples creados en Python: 📹 Webcam con c

Madirex 1 Feb 15, 2022