City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Code

Overview

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones

Requirements

Python 3.8 or later with all requirements.txt dependencies installed, including torch>=1.7. To install run:

$ pip install -r requirements.txt

Data Preparation

If you want to reproduce our results on AI City Challengef, please download the datasets from: (https://www.aicitychallenge.org/) and put it under the folder datasets. Make sure the data structure is like:

AIC21-MTMC

  • datasets
    • AIC21_Track3_MTMC_Tracking
      • unzip AIC21_Track3_MTMC_Tracking.zip
    • detect_provided (Including detection and corresponding Re-ID features)
  • detector
    • yolov5
  • reid
    • reid_model (Pre-trained reid model on Track 2)
      • resnet101_ibn_a_2.pth
      • resnet101_ibn_a_3.pth
      • resnext101_ibn_a_2.pth

Reproduce frome detect_provided

If you just want reproduce our results, you can directly download detect_provided:

cd AIC21-MTMC
mkdir datasets
cd datasets

Then put detect_provided folder under this folder and modify yml config/aic_mcmt.yml:

CHALLENGE_DATA_DIR: '/home/xxx/AIC21-MTMC/datasets/AIC21_Track3_MTMC_Tracking/'
DET_SOURCE_DIR: '/home/xxx/AIC21-MTMC/datasets/detection/images/test/S06/'
DATA_DIR: '/home/xxx/AIC21-MTMC/datasets/detect_provided'
REID_SIZE_TEST: [384, 384]
ROI_DIR: '/home/xxx/AIC21-MTMC/datasets/AIC21_Track3_MTMC_Tracking/test/S06/'
CID_BIAS_DIR: '/home/xxx/AIC21-MTMC/datasets/AIC21_Track3_MTMC_Tracking/cam_timestamp/'
USE_RERANK: True
USE_FF: True
SCORE_THR: 0.1
MCMT_OUTPUT_TXT: 'track3.txt'

Then run:

bash ./run_mcmt.sh

The final results will locate at path ./reid/reid-matching/tools/track3.txt

Reproduce on all pipeline

If you just want reproduce our results on all pipeline, you have to download:

detector/yolov5/yolov5x.pt
reid/reid_model/resnet101_ibn_a_2.pth
reid/reid_model/resnet101_ibn_a_3.pth
reid/reid_model/resnext101_ibn_a_2.pth

You can refer to Track2 to retrain the reid model.

Then modify yml:

config/aic_all.yml
config/aic_reid1.yml
config/aic_reid2.yml
config/aic_reid3.yml

Then run:

bash ./run_all.sh

The final results will locate at path ./reid/reid-matching/tools/track3.txt

Multi Task RL Baselines

MTRL Multi Task RL Algorithms Contents Introduction Setup Usage Documentation Contributing to MTRL Community Acknowledgements Introduction M

Facebook Research 171 Jan 09, 2023
Air Pollution Prediction System using Linear Regression and ANN

AirPollution Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living Publication Link:

Dr Sharnil Pandya, Associate Professor, Symbiosis International University 19 Feb 07, 2022
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Code for ViTAS_Vision Transformer Architecture Search

Vision Transformer Architecture Search This repository open source the code for ViTAS: Vision Transformer Architecture Search. ViTAS aims to search fo

46 Dec 17, 2022
Dense Unsupervised Learning for Video Segmentation (NeurIPS*2021)

Dense Unsupervised Learning for Video Segmentation This repository contains the official implementation of our paper: Dense Unsupervised Learning for

Visual Inference Lab @TU Darmstadt 173 Dec 26, 2022
PyTorch implementation of the ideas presented in the paper Interaction Grounded Learning (IGL)

Interaction Grounded Learning This repository contains a simple PyTorch implementation of the ideas presented in the paper Interaction Grounded Learni

Arthur Juliani 4 Aug 31, 2022
DeLiGAN - This project is an implementation of the Generative Adversarial Network

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Net

Video Analytics Lab -- IISc 110 Sep 13, 2022
using STGCN to achieve egg classification task

EEG Classification   The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,

4 Jun 13, 2022
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.

marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy

25 Nov 15, 2022
Drone Task1 - Drone Task1 With Python

Drone_Task1 Matching Results 3.mp4 1.mp4

MLV Lab (Machine Learning and Vision Lab at Korea University) 11 Nov 14, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
Out of Distribution Detection on Natural Adversarial Examples

OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht

Anugya 1 Jun 08, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques. arXiv: Colossal-AI: A Unified Deep Learning Syst

HPC-AI Tech 7.9k Jan 08, 2023
POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propagation including diffraction

POPPY: Physical Optics Propagation in Python POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propaga

Space Telescope Science Institute 132 Dec 15, 2022
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022
Hippocampal segmentation using the UNet network for each axis

Hipposeg Hippocampal segmentation using the UNet network for each axis, inspired by https://github.com/MICLab-Unicamp/e2dhipseg Red: False Positive Gr

Juan Carlos Aguirre Arango 0 Sep 02, 2021
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
Adaptive Attention Span for Reinforcement Learning

Adaptive Transformers in RL Official implementation of Adaptive Transformers in RL In this work we replicate several results from Stabilizing Transfor

100 Nov 15, 2022