This repository contains code and data for "On the Multimodal Person Verification Using Audio-Visual-Thermal Data"

Overview

trimodal_person_verification

This repository contains the code, and preprocessed dataset featured in "A Study of Multimodal Person Verification Using Audio-Visual-Thermal Data".

Person verification is the general task of verifying person’s identity using various biometric characteristics. We study an approach to multimodal person verification using audio, visual, and thermal modalities. In particular, we implemented unimodal, bimodal, and trimodal verification systems using the state-of-the-art deep learning architectures and compared their performance under clean and noisy conditions.

Dependencies

pip install -r requirements.txt

Dataset

In this work, we utilized the SpeakingFaces dataset to train, validate, and test the person verification systems. SpeakingFaces is a publicly available multimodal dataset comprised of audio, visual, and thermal data streams. The preprocessed data used for our experiments can be downloaded from Google Drive.

The data directory contains the compressed version of the preprocessed data used for the reported experiments. For each utterance, only the first frame (visual and thermal) is selected. The train set is split into 5 parts that should be extracted into the same location.

The data/metadata subdirectory contains lists prepared for the train, validation, and test sets following the format of VoxCeleb. In particular, the train list contains the paths to the recordings and the corresponding subject identifiers. The validation and test lists consist of randomly generated positive and negative pairs. For each subject, the same number of positive and negative pairs were selected. In total, the numbers of pairs in the validation and test sets are 38,000 and 46,200, respectively.

Note, to run noisy training and evaluation, you should first download the MUSAN dataset.

See trainSpeakerNet.py for details on where the data should be stored.

Training examples : clean data

Unimodal models

python trainSpeakerNet.py --model ResNetSE34Multi --modality wav --log_input True --trainfunc angleproto --max_epoch 1500 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.01 --seed 1 --save_path exps/wav/exp1 
python trainSpeakerNet.py --model ResNetSE34Multi --modality rgb --log_input True --trainfunc angleproto --max_epoch 600 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.01 --seed 1 --save_path exps/rgb/exp1 
python trainSpeakerNet.py --model ResNetSE34Multi --modality thr --log_input True --trainfunc angleproto --max_epoch 600 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.01 --seed 1 --save_path exps/thr/exp1 

Multimodal models

python trainSpeakerNet.py --model ResNetSE34Multi --modality wavrgb --log_input True --trainfunc angleproto --max_epoch 600 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.01 --seed 1 --save_path exps/wavrgb/exp1 
python trainSpeakerNet.py --model ResNetSE34Multi --modality wavrgbthr --log_input True --trainfunc angleproto --max_epoch 600 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.1 --seed 1 --save_path exps/wavrgb/exp1 

Training examples : noisy data

Unimodal models

python trainSpeakerNet.py --model ResNetSE34Multi --modality wav --noisy_train True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --max_epoch 1500 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.001 --seed 1 --save_path exps/wav/exp2
python trainSpeakerNet.py --model ResNetSE34Multi --modality rgb --noisy_train True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --max_epoch 600 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.01 --seed 1 --save_path exps/rgb/exp2 
python trainSpeakerNet.py --model ResNetSE34Multi --modality thr --noisy_train True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --max_epoch 600 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.01 --seed 1 --save_path exps/thr/exp2 

Multimodal models

python trainSpeakerNet.py --model ResNetSE34Multi --modality wavrgb --noisy_train True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --max_epoch 600 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.01 --seed 1 --save_path exps/wavrgb/exp2 
python trainSpeakerNet.py --model ResNetSE34Multi --modality wavrgbthr --noisy_train True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --max_epoch 600 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.1 --seed 1 --save_path exps/wavrgb/exp2 

Evaluating pretrained models: clean test data

Unimodal models

python trainSpeakerNet.py --model ResNetSE34Multi --modality wav --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/wav/exp1 
python trainSpeakerNet.py --model ResNetSE34Multi --modality rgb --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt   --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/rgb/exp1 
python trainSpeakerNet.py --model ResNetSE34Multi --modality thr --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt   --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/thr/exp1 

Multimodal models

python trainSpeakerNet.py --model ResNetSE34Multi --modality wavrgb  --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt   --log_input True  --trainfunc angleproto --eval_frames 200 --save_path exps/wavrgb/exp1 
python trainSpeakerNet.py --model ResNetSE34Multi --modality wavrgbthr --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt   --log_input True  --trainfunc angleproto --eval_frames 200 --save_path exps/wavrgb/exp1 

Evaluating pretrained models: noisy test data

Unimodal models

python revalidate.py --model ResNetSE34Multi --modality wav --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/wav/exp2

python revalidate.py --model ResNetSE34Multi --modality wav --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt    --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/wav/exp2
python revalidate.py --model ResNetSE34Multi --modality rgb --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/rgb/exp2

python revalidate.py --model ResNetSE34Multi --modality rgb --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt    --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/rgb/exp2 
python revalidate.py --model ResNetSE34Multi --modality thr --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/thr/exp2

python revalidate.py --model ResNetSE34Multi --modality thr --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt    --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/thr/exp2 

Multimodal models

python revalidate.py --model ResNetSE34Multi --modality wavrgb --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/wavrgb/exp2

python revalidate.py --model ResNetSE34Multi --modality wavrgb --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt    --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/wavrgb/exp2 
python revalidate.py --model ResNetSE34Multi --modality wavrgbthr --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/wavrgbthr/exp2

python revalidate.py --model ResNetSE34Multi --modality wavrgbthr --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt    --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/wavrgb/exp2 
Owner
ISSAI
Institute of Smart Systems and Artificial Intelligence
ISSAI
Implementation of the Chamfer Distance as a module for pyTorch

Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.

Christian Diller 205 Jan 05, 2023
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Prune Truong 71 Nov 18, 2022
PoolFormer: MetaFormer is Actually What You Need for Vision

PoolFormer: MetaFormer is Actually What You Need for Vision (arXiv) This is a PyTorch implementation of PoolFormer proposed by our paper "MetaFormer i

Sea AI Lab 1k Dec 30, 2022
ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis

ImageBART NeurIPS 2021 Patrick Esser*, Robin Rombach*, Andreas Blattmann*, Björn Ommer * equal contribution arXiv | BibTeX | Poster Requirements A sui

CompVis Heidelberg 110 Jan 01, 2023
Source code of SIGIR2021 Paper 'One Chatbot Per Person: Creating Personalized Chatbots based on Implicit Profiles'

DHAP Source code of SIGIR2021 Long Paper: One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles . Preinstallation Fir

ZYMa 32 Dec 06, 2022
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.

FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu

77 Dec 27, 2022
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models This repository is the official implementation of the fol

DistributedML 41 Dec 06, 2022
A trusty face recognition research platform developed by Tencent Youtu Lab

Introduction TFace: A trusty face recognition research platform developed by Tencent Youtu Lab. It provides a high-performance distributed training fr

Tencent 956 Jan 01, 2023
Filtering variational quantum algorithms for combinatorial optimization

Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently.

1 Feb 09, 2022
Safe Policy Optimization with Local Features

Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi

Akifumi Wachi 6 Jun 05, 2022
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.0

Saman Khamesian 6 Dec 13, 2022
Serverless proxy for Spark cluster

Hydrosphere Mist Hydrosphere Mist is a serverless proxy for Spark cluster. Mist provides a new functional programming framework and deployment model f

hydrosphere.io 317 Dec 01, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

64 Jan 05, 2023
PyTorch package for the discrete VAE used for DALL·E.

Overview [Blog] [Paper] [Model Card] [Usage] This is the official PyTorch package for the discrete VAE used for DALL·E. Installation Before running th

OpenAI 9.5k Jan 05, 2023
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
🏅 The Most Comprehensive List of Kaggle Solutions and Ideas 🏅

🏅 Collection of Kaggle Solutions and Ideas 🏅

Farid Rashidi 2.3k Jan 08, 2023