StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

Overview

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

Open In Colab arXiv

[Project Website] [Replicate.ai Project]

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators
Rinon Gal, Or Patashnik, Haggai Maron, Gal Chechik, Daniel Cohen-Or

Abstract:
Can a generative model be trained to produce images from a specific domain, guided by a text prompt only, without seeing any image? In other words: can an image generator be trained blindly? Leveraging the semantic power of large scale Contrastive-Language-Image-Pre-training (CLIP) models, we present a text-driven method that allows shifting a generative model to new domains, without having to collect even a single image from those domains. We show that through natural language prompts and a few minutes of training, our method can adapt a generator across a multitude of domains characterized by diverse styles and shapes. Notably, many of these modifications would be difficult or outright impossible to reach with existing methods. We conduct an extensive set of experiments and comparisons across a wide range of domains. These demonstrate the effectiveness of our approach and show that our shifted models maintain the latent-space properties that make generative models appealing for downstream tasks.

Description

This repo contains the official implementation of StyleGAN-NADA, a Non-Adversarial Domain Adaptation for image generators. At a high level, our method works using two paired generators. We initialize both using a pre-trained model (for example, FFHQ). We hold one generator constant and train the other by demanding that the direction between their generated images in clip space aligns with some given textual direction.

The following diagram illustrates the process:

We set up a colab notebook so you can play with it yourself :) Let us know if you come up with any cool results!

We've also included inversion in the notebook (using ReStyle) so you can use the paired generators to edit real images. Most edits will work well with the pSp version of ReStyle, which also allows for more accurate reconstructions. In some cases, you may need to switch to the e4e based encoder for better editing at the cost of reconstruction accuracy.

Updates

03/10/2021 (A) Interpolation video script now supports InterfaceGAN based-editing.
03/10/2021 (B) Updated the notebook with support for target style images.
03/10/2021 (C) Added replicate.ai support. You can now run inference or generate videos without needing to setup anything or work with code.
22/08/2021 Added a script for generating cross-domain interpolation videos (similar to the top video in the project page).
21/08/2021 (A) Added the ability to mimic styles from an image set. See the usage section.
21/08/2021 (B) Added dockerized UI tool.
21/08/2021 (C) Added link to drive with pre-trained models.

Generator Domain Adaptation

We provide many examples of converted generators in our project page. Here are a few samples:

Setup

The code relies on the official implementation of CLIP, and the Rosinality pytorch implementation of StyleGAN2.

Requirements

  • Anaconda
  • Pretrained StyleGAN2 generator (can be downloaded from here). You can also download a model from here and convert it with the provited script. See the colab notebook for examples.

In addition, run the following commands:

conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=<CUDA_VERSION>
pip install ftfy regex tqdm
pip install git+https://github.com/openai/CLIP.git

Usage

To convert a generator from one domain to another, use the colab notebook or run the training script in the ZSSGAN directory:

python train.py --size 1024 
                --batch 2 
                --n_sample 4 
                --output_dir /path/to/output/dir 
                --lr 0.002 
                --frozen_gen_ckpt /path/to/stylegan2-ffhq-config-f.pt 
                --iter 301 
                --source_class "photo" 
                --target_class "sketch" 
                --auto_layer_k 18
                --auto_layer_iters 1 
                --auto_layer_batch 8 
                --output_interval 50 
                --clip_models "ViT-B/32" "ViT-B/16" 
                --clip_model_weights 1.0 1.0 
                --mixing 0.0
                --save_interval 150

Where you should adjust size to match the size of the pre-trained model, and the source_class and target_class descriptions control the direction of change. For an explenation of each argument (and a few additional options), please consult ZSSGAN/options/train_options.py. For most modifications these default parameters should be good enough. See the colab notebook for more detailed directions.

21/08/2021 Instead of using source and target texts, you can now target a style represented by a few images. Simply replace the --source_class and --target_class options with:

--style_img_dir /path/to/img/dir

where the directory should contain a few images (png, jpg or jpeg) with the style you want to mimic. There is no need to normalize or preprocess the images in any form.

Some results of converting an FFHQ model using children's drawings, LSUN Cars using Dali paintings and LSUN Cat using abstract sketches:

Pre-Trained Models

We provide a Google Drive containing an assortment of models used in the paper, tweets and other locations. If you want access to a model not yet included in the drive, please let us know.

Docker

We now provide a simple dockerized interface for training models. The UI currently supports a subset of the colab options, but does not require repeated setups.

In order to use the docker version, you must have a CUDA compatible GPU and must install nvidia-docker and docker-compose first.

After cloning the repo, simply run:

cd StyleGAN-nada/
docker-compose up
  • Downloading the docker for the first time may take a few minutes.
  • While the docker is running, the UI should be available under http://localhost:8888/
  • The UI was tested using an RTX3080 GPU with 16GB of RAM. Smaller GPUs may run into memory limits with large models.

If you find the UI useful and want it expended to allow easier access to saved models, support for real image editing etc., please let us know.

Editing Video

In order to generate a cross-domain editing video (such as the one at the top of our project page), prepare a set of edited latent codes in the original domain and run the following generate_videos.py script in the ZSSGAN directory:

python generate_videos.py --ckpt /model_dir/pixar.pt             \
                                 /model_dir/ukiyoe.pt            \
                                 /model_dir/edvard_munch.pt      \
                                 /model_dir/botero.pt            \
                          --out_dir /output/video/               \
                          --source_latent /latents/latent000.npy \
                          --target_latents /latents/
  • The script relies on ffmpeg to function. On linux it can be installed by running sudo apt install ffmpeg
  • The argument to --ckpt is a list of model checkpoints used to fill the grid.
    • The number of models must be a perfect square, e.g. 1, 4, 9...
  • The argument to --target_latents can be either a directory containing a set of .npy w-space latent codes, or a list of individual files.
  • Please see the script for more details.

We provide example latent codes for the same identity used in our video. If you want to generate your own, we recommend using StyleCLIP, InterFaceGAN, StyleFlow, GANSpace or any other latent space editing method.

03/10/2021 We now provide editing directions for use in video generation. To use the built-in directions, omit the --target_latents argument. You can use specific editing directions from the available list by passing them with the --edit_directions flag. See generate_videos.py for more information.

Related Works

The concept of using CLIP to guide StyleGAN generation results was introduced in StyleCLIP (Patashnik et al.).

We invert real images into the GAN's latent space using ReStyle (Alaluf et al.).

Editing directions for video generation were taken from Anycost GAN (Lin et al.).

Citation

If you make use of our work, please cite our paper:

@misc{gal2021stylegannada,
      title={StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators}, 
      author={Rinon Gal and Or Patashnik and Haggai Maron and Gal Chechik and Daniel Cohen-Or},
      year={2021},
      eprint={2108.00946},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Additional examples:

Our method can be used to enable out-of-domain editing of real images, using pre-trained, off-the-shelf inversion networks. Here are a few more examples:

E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

This is a Pytorch implementation of Janai, J., Güney, F., Ranjan, A., Black, M. and Geiger, A., Unsupervised Learning of Multi-Frame Optical Flow with

Anurag Ranjan 110 Nov 02, 2022
DI-smartcross - Decision Intelligence Platform for Traffic Crossing Signal Control

DI-smartcross DI-smartcross - Decision Intelligence Platform for Traffic Crossin

OpenDILab 213 Jan 02, 2023
A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

張致強 1 Feb 09, 2022
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
Feature extraction made simple with torchextractor

torchextractor: PyTorch Intermediate Feature Extraction Introduction Too many times some model definitions get remorselessly copy-pasted just because

Antoine Broyelle 89 Oct 31, 2022
Deep functional residue identification

DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio

Flatiron Institute 156 Dec 25, 2022
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

BMC The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing". BibTex entry available here. B

Orange 383 Dec 16, 2022
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

25 Nov 09, 2022
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
Contextual Attention Localization for Offline Handwritten Text Recognition

CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T

0 Feb 17, 2022
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning Sriram Ravula, Georgios Smyrnis This is the code for our pr

Sriram Ravula 26 Dec 10, 2022
Lightweight tool to perform MITM attack on local network

ARPSpy - A lightweight tool to perform MITM attack Using many library to perform ARP Spoof and auto-sniffing HTTP packet containing credential. (Never

MinhItachi 8 Aug 28, 2022
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

Aneta Texler 131 Dec 19, 2022
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref

35 Nov 10, 2022
PyTorch implementation of popular datasets and models in remote sensing

PyTorch Remote Sensing (torchrs) (WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Re

isaac 222 Dec 28, 2022