Systemic Evolutionary Chemical Space Exploration for Drug Discovery

Overview

SECSE


SECSE: Systemic Evolutionary Chemical Space Explorer

plot

Chemical space exploration is a major task of the hit-finding process during the pursuit of novel chemical entities. Compared with other screening technologies, computational de novo design has become a popular approach to overcome the limitation of current chemical libraries. Here, we reported a de novo design platform named systemic evolutionary chemical space explorer (SECSE). The platform was conceptually inspired by fragment-based drug design, that miniaturized a “lego-building” process within the pocket of a certain target. The key of virtual hits generation was then turned into a computational search problem. To enhance search and optimization, human intelligence and deep learning were integrated. SECSE has the potential in finding novel and diverse small molecules that are attractive starting points for further validation.

Tutorials and Usage


  1. Set Environment Variables
    export $SECSE=path/to/SECSE
    if you use AutoDock Vina for docking: (download here)
    export $VINA=path/to/AutoDockVINA
    if you use Gilde for docking (additional installation & license required):
    export $SCHRODINGER=path/to/SCHRODINGER

  2. Give execution permissions to the SECSE directory
    chmod -R +X path/to/SECSE

  3. Input fragments: a tab split .smi file without header. See demo here.

  4. Parameters in config file:
    [DEFAULT]

    • workdir, working directory, create if not exists, otherwise overwrite, type=str
    • fragments, file path to seed fragments, smi format, type=str
    • num_gen, number of generations, type=int
    • num_per_gen, number of molecules generated each generation, type=int
    • seed_per_gen, number of selected seed molecules per generation, default=1000, type=int
    • start_gen, number of staring generation, default=0, type=int
    • docking_program, name of docking program, AutoDock-Vina (input vina) or Glide (input glide) , default=vina, type=str

    [docking]

    • target, protein PDBQT if use AutoDock Vina; Grid file if choose Glide, type=str
    • RMSD, docking pose RMSD cutoff between children and parent, default=2, type=float
    • delta_score, decreased docking score cutoff between children and parent, default=-1.0, type=float
    • score_cutoff, default=-9, type=float

    Parameters when docking by AutoDock Vina:

    • x, Docking box x, type=float
    • y, Docking box y, type=float
    • z, Docking box z, type=float
    • box_size_x, Docking box size x, default=20, type=float
    • box_size_y, Docking box size y, default=20, type=float
    • box_size_z, Docking box size z, default=20, type=float

    [deep learning]

    • mode, mode of deep learning modeling, 0: not use, 1: modeling per generation, 2: modeling overall after all the generation, default=0, type=int
    • dl_per_gen, top N predicted molecules for docking, default=100, type=int
    • dl_score_cutoff, default=-9, type=float

    [properties]

    • MW, molecular weights cutoff, default=450, type=int
    • logP_lower, minimum of logP, default=0.5, type=float
    • logP_upper, maximum of logP, default=7, type=float
    • chiral_center, maximum of chiral center,default=3, type=int
    • heteroatom_ratio, maximum of heteroatom ratio, default=0.35, type=float
    • rotatable_bound_num, maximum of rotatable bound, default=5, type=int
    • rigid_body_num, default=2, type=int

    Config file of a demo case phgdh_demo_vina.ini

  5. Run SECSE
    python $SECSE/run_secse.py --config path/to/config

  6. Output files

    • merged_docked_best_timestamp_with_grow_path.csv: selected molecules and growing path
    • selected.sdf: 3D conformers of all selected molecules

Dependencies


GNU Parallel installation

numpy~=1.20.3, pandas~=1.3.3, pandarallel~=1.5.2, tqdm~=4.62.2, biopandas~=0.2.9, openbabel~=3.1.1, rdkit~=2021.03.5, chemprop~=1.3.1, torch~=1.9.0+cu111

Citation


Lu, C.; Liu, S.; Shi, W.; Yu, J.; Zhou, Z.; Zhang, X.; Lu, X.; Cai, F.; Xia, N.; Wang, Y. Systemic Evolutionary Chemical Space Exploration For Drug Discovery. ChemRxiv 2021. This content is a preprint and has not been peer-reviewed.

License


SECSE is released under Apache License, Version 2.0.

You might also like...
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop
Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop

Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo

BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2

CoaDTI Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2 Abstract Environment The test was conducted i

The code for SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.

SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network'. Requirements py

[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer  from NNAISENSE.
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

Comments
  • Problem running demo

    Problem running demo

    Hi!

    When I try to run the demo with the command below. python $SECSE/run_secse.py --config demo/phgdh_demo_vina.ini

    It generates pandas.errors.EmptyDataError: No columns to parse from file, what should I do to solve it? Thank you!

    Here is the output

    **************************************************************************************** 
          ____    _____    ____   ____    _____ 
         / ___|  | ____|  / ___| / ___|  | ____|
         \___ \  |  _|   | |     \___ \  |  _|  
          ___) | | |___  | |___   ___) | | |___ 
         |____/  |_____|  \____| |____/  |_____|
    /home/bruce/Downloads/Softwares/Anaconda/envs/secse/lib/python3.7/site-packages/pandas/core/generic.py:2882: UserWarning: The spaces in these column names will not be changed. In pandas versions < 0.14, spaces were converted to underscores.
     method=method,
    Table 'G-001' already exists.
    
    ******************************************************************
    Input fragment file: /home/bruce/Work/CADD/SECSE/code/demo/demo_1020.smi
    Target grid file: /home/bruce/Work/CADD/SECSE/code/demo/PHGDH_6RJ3_for_vina.pdbqt
    Workdir: /home/bruce/Work/CADD/SECSE/code/res/
    
    
    ************************************************** 
    Generation  0 ...
    Step 1: Docking with Autodock Vina ...
    /home/bruce/Work/CADD/SECSE/code/secse/evaluate/ligprep_vina_parallel.sh /home/bruce/Work/CADD/SECSE/code/res/generation_0 /home/bruce/Work/CADD/SECSE/code/demo/demo_1020.smi /home/bruce/Work/CADD/SECSE/code/demo/PHGDH_6RJ3_for_vina.pdbqt 20.9 -10.4 3.0 20.0 20.0 25.0 10
    find /home/bruce/Work/CADD/SECSE/code/res/generation_0/sdf_files -name "*sdf" | xargs -n 100 cat > /home/bruce/Work/CADD/SECSE/code/res/generation_0/docking_outputs_with_score.sdf
    Docking time cost: 0.12 min.
    Step 2: Ranking docked molecules...
    9 cmpds after evaluate
    The evaluate score cutoff is: -9.0
    9 final seeds.
    
    ************************************************** 
    Generation  1 ...
    Step 1: Mutation
    No rule class:  B-001
    No rule class:  G-003
    No rule class:  G-004
    No rule class:  G-005
    No rule class:  G-006
    No rule class:  G-007
    No rule class:  M-001
    No rule class:  M-002
    No rule class:  M-003
    No rule class:  M-004
    No rule class:  M-005
    No rule class:  M-006
    No rule class:  M-007
    No rule class:  M-008
    No rule class:  M-009
    No rule class:  M-010
    No rule class: G-002
    Step 2: Filtering all mutated mols
    sh /home/bruce/Work/CADD/SECSE/code/secse/growing/filter_parallel.sh /home/bruce/Work/CADD/SECSE/code/res/generation_1 1 demo/phgdh_demo_vina.ini 10
    Filter runtime: 0.00 min.
    Traceback (most recent call last):
     File "/home/bruce/Work/CADD/SECSE/code/secse/run_secse.py", line 80, in <module>
       main()
     File "/home/bruce/Work/CADD/SECSE/code/secse/run_secse.py", line 65, in main
       workflow.grow()
     File "/home/bruce/Work/CADD/SECSE/code/secse/grow_processes.py", line 208, in grow
       self._filter_df = pd.read_csv(os.path.join(self.workdir_now, "filter.csv"), header=None)
     File "/home/bruce/Downloads/Softwares/Anaconda/envs/secse/lib/python3.7/site-packages/pandas/util/_decorators.py", line 311, in wrapper
       return func(*args, **kwargs)
     File "/home/bruce/Downloads/Softwares/Anaconda/envs/secse/lib/python3.7/site-packages/pandas/io/parsers/readers.py", line 586, in read_csv
       return _read(filepath_or_buffer, kwds)
     File "/home/bruce/Downloads/Softwares/Anaconda/envs/secse/lib/python3.7/site-packages/pandas/io/parsers/readers.py", line 482, in _read
       parser = TextFileReader(filepath_or_buffer, **kwds)
     File "/home/bruce/Downloads/Softwares/Anaconda/envs/secse/lib/python3.7/site-packages/pandas/io/parsers/readers.py", line 811, in __init__
       self._engine = self._make_engine(self.engine)
     File "/home/bruce/Downloads/Softwares/Anaconda/envs/secse/lib/python3.7/site-packages/pandas/io/parsers/readers.py", line 1040, in _make_engine
       return mapping[engine](self.f, **self.options)  # type: ignore[call-arg]
     File "/home/bruce/Downloads/Softwares/Anaconda/envs/secse/lib/python3.7/site-packages/pandas/io/parsers/c_parser_wrapper.py", line 69, in __init__
       self._reader = parsers.TextReader(self.handles.handle, **kwds)
     File "pandas/_libs/parsers.pyx", line 549, in pandas._libs.parsers.TextReader.__cinit__
    pandas.errors.EmptyDataError: No columns to parse from file
    
    opened by BW15061999 17
  • Question about running the demo code

    Question about running the demo code

    Hi authors,

    I have tried to run your demo code in README.md, but got some errors.

    Command

    python /home/xxx/workspace/off-SECSE/secse/run_secse.py --config ./config.ini
    

    Output

     **************************************************************************************** 
           ____    _____    ____   ____    _____ 
          / ___|  | ____|  / ___| / ___|  | ____|
          \___ \  |  _|   | |     \___ \  |  _|  
           ___) | | |___  | |___   ___) | | |___ 
          |____/  |_____|  \____| |____/  |_____|
    
    ******************************************************************
    Input fragment file: /home/xxx/workspace/off-SECSE/fy-run/demo001/ligand.smi
    Target grid file: /home/xxx/workspace/off-SECSE/fy-run/demo001/receptor.pdbqt
    Workdir: /home/xxx/workspace/off-SECSE/fy-run/demo001/
    
    Step 1: Docking with Autodock Vina ...
    /home/xxx/workspace/off-SECSE/secse/evaluate/ligprep_vina_parallel.sh /home/xxx/workspace/off-SECSE/fy-run/demo001/generation_0 /home/xxx/workspace/off-SECSE/fy-run/demo001/ligand.smi /home/t-yafan/workspace/off-SECSE/fy-run/demo001/receptor.pdbqt 20.9 -10.4 3.0 20.0 20.0 25.0 10
    find /home/xxx/workspace/off-SECSE/fy-run/demo001/generation_0/sdf_files -name "*sdf" | xargs -n 100 cat > /home/xxx/workspace/off-SECSE/fy-run/demo001/generation_0/docking_outputs_with_score.sdf
    Docking time cost: 0.11 min.
    Step 2: Ranking docked molecules...
    9 cmpds after evaluate
    The evaluate score cutoff is: -9.0
    9 final seeds.
    
     ************************************************** 
    Generation  1 ...
    Step 1: Mutation
    Traceback (most recent call last):
      File "/home/xxx/workspace/off-SECSE/secse/run_secse.py", line 70, in <module>
        main()
      File "/home/xxx/workspace/off-SECSE/secse/run_secse.py", line 55, in main
        workflow.grow()
      File "/home/xxx/workspace/off-SECSE/secse/grow_processes.py", line 159, in grow
        header = mutation_df(self.winner_df, self.workdir, self.cpu_num, self.gen)
      File "/home/xxx/workspace/off-SECSE/secse/growing/mutation/mutation.py", line 166, in mutation_df
        mutation = Mutation(5000, workdir)
      File "/home/xxx/workspace/off-SECSE/secse/growing/mutation/mutation.py", line 29, in __init__
        self.load_common_rules()
      File "/home/xxx/workspace/off-SECSE/secse/growing/mutation/mutation.py", line 50, in load_common_rules
        c.execute(sql)
    sqlite3.OperationalError: no such table: B-001
    

    It seems that the file secse/growing/mutation/rules_demo.db is missing in the repo. How can I fix it?

    Thanks!

    opened by fyabc 5
  • All dockings do not work because there's no gridding process.

    All dockings do not work because there's no gridding process.

    Hi, I was trying out the repo when I realised that neither the autodock nor glide is able to run because there was no gridding process, resulting in no grid files. >.<

    opened by yipy0005 3
Releases(v1.1.0)
Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Do pedestrians pay attention? Eye contact detection for autonomous driving Official implementation of the paper Do pedestrians pay attention? Eye cont

VITA lab at EPFL 26 Nov 02, 2022
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o

OpenMMLab 3.2k Dec 31, 2022
Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)

Graph Convolutional Gated Recurrent Neural Network (GCGRNN) Improved from Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF

Lei Lin 21 Dec 18, 2022
Detectorch - detectron for PyTorch

Detectorch - detectron for PyTorch (Disclaimer: this is work in progress and does not feature all the functionalities of detectron. Currently only inf

Ignacio Rocco 558 Dec 23, 2022
OneShot Learning-based hotword detection.

EfficientWord-Net Hotword detection based on one-shot learning Home assistants require special phrases called hotwords to get activated (eg:"ok google

ANT-BRaiN 102 Dec 25, 2022
Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Aquarius Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions NOTE: We are currently going through the open-source process requir

Zhiyuan YAO 0 Jun 02, 2022
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri

CompVis Heidelberg 206 Dec 20, 2022
Snscrape-jsonl-urls-extractor - Extracts urls from jsonl produced by snscrape

snscrape-jsonl-urls-extractor extracts urls from jsonl produced by snscrape Usag

1 Feb 26, 2022
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023
Official page of Patchwork (RA-L'21 w/ IROS'21)

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 254 Jan 05, 2023
Learning Off-Policy with Online Planning, CoRL 2021

LOOP: Learning Off-Policy with Online Planning Accepted in Conference of Robot Learning (CoRL) 2021. Harshit Sikchi, Wenxuan Zhou, David Held Paper In

Harshit Sikchi 24 Nov 22, 2022
Lama-cleaner: Image inpainting tool powered by LaMa

Lama-cleaner: Image inpainting tool powered by LaMa

Qing 5.8k Jan 05, 2023
PyTorchMemTracer - Depict GPU memory footprint during DNN training of PyTorch

A Memory Tracer For PyTorch OOM is a nightmare for PyTorch users. However, most

Jiarui Fang 9 Nov 14, 2022
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
A PyTorch implementation of QANet.

QANet-pytorch NOTICE I'm very busy these months. I'll return to this repo in about 10 days. Introduction An implementation of QANet with PyTorch. Any

H. Z. 343 Nov 03, 2022
Employee-Managment - Company employee registration software in the face recognition system

Employee-Managment Company employee registration software in the face recognitio

Alireza Kiaeipour 7 Jul 10, 2022
PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more

PyTorch Image Models Sponsors What's New Introduction Models Features Results Getting Started (Documentation) Train, Validation, Inference Scripts Awe

Ross Wightman 22.9k Jan 09, 2023