Systemic Evolutionary Chemical Space Exploration for Drug Discovery

Overview

SECSE


SECSE: Systemic Evolutionary Chemical Space Explorer

plot

Chemical space exploration is a major task of the hit-finding process during the pursuit of novel chemical entities. Compared with other screening technologies, computational de novo design has become a popular approach to overcome the limitation of current chemical libraries. Here, we reported a de novo design platform named systemic evolutionary chemical space explorer (SECSE). The platform was conceptually inspired by fragment-based drug design, that miniaturized a “lego-building” process within the pocket of a certain target. The key of virtual hits generation was then turned into a computational search problem. To enhance search and optimization, human intelligence and deep learning were integrated. SECSE has the potential in finding novel and diverse small molecules that are attractive starting points for further validation.

Tutorials and Usage


  1. Set Environment Variables
    export $SECSE=path/to/SECSE
    if you use AutoDock Vina for docking: (download here)
    export $VINA=path/to/AutoDockVINA
    if you use Gilde for docking (additional installation & license required):
    export $SCHRODINGER=path/to/SCHRODINGER

  2. Give execution permissions to the SECSE directory
    chmod -R +X path/to/SECSE

  3. Input fragments: a tab split .smi file without header. See demo here.

  4. Parameters in config file:
    [DEFAULT]

    • workdir, working directory, create if not exists, otherwise overwrite, type=str
    • fragments, file path to seed fragments, smi format, type=str
    • num_gen, number of generations, type=int
    • num_per_gen, number of molecules generated each generation, type=int
    • seed_per_gen, number of selected seed molecules per generation, default=1000, type=int
    • start_gen, number of staring generation, default=0, type=int
    • docking_program, name of docking program, AutoDock-Vina (input vina) or Glide (input glide) , default=vina, type=str

    [docking]

    • target, protein PDBQT if use AutoDock Vina; Grid file if choose Glide, type=str
    • RMSD, docking pose RMSD cutoff between children and parent, default=2, type=float
    • delta_score, decreased docking score cutoff between children and parent, default=-1.0, type=float
    • score_cutoff, default=-9, type=float

    Parameters when docking by AutoDock Vina:

    • x, Docking box x, type=float
    • y, Docking box y, type=float
    • z, Docking box z, type=float
    • box_size_x, Docking box size x, default=20, type=float
    • box_size_y, Docking box size y, default=20, type=float
    • box_size_z, Docking box size z, default=20, type=float

    [deep learning]

    • mode, mode of deep learning modeling, 0: not use, 1: modeling per generation, 2: modeling overall after all the generation, default=0, type=int
    • dl_per_gen, top N predicted molecules for docking, default=100, type=int
    • dl_score_cutoff, default=-9, type=float

    [properties]

    • MW, molecular weights cutoff, default=450, type=int
    • logP_lower, minimum of logP, default=0.5, type=float
    • logP_upper, maximum of logP, default=7, type=float
    • chiral_center, maximum of chiral center,default=3, type=int
    • heteroatom_ratio, maximum of heteroatom ratio, default=0.35, type=float
    • rotatable_bound_num, maximum of rotatable bound, default=5, type=int
    • rigid_body_num, default=2, type=int

    Config file of a demo case phgdh_demo_vina.ini

  5. Run SECSE
    python $SECSE/run_secse.py --config path/to/config

  6. Output files

    • merged_docked_best_timestamp_with_grow_path.csv: selected molecules and growing path
    • selected.sdf: 3D conformers of all selected molecules

Dependencies


GNU Parallel installation

numpy~=1.20.3, pandas~=1.3.3, pandarallel~=1.5.2, tqdm~=4.62.2, biopandas~=0.2.9, openbabel~=3.1.1, rdkit~=2021.03.5, chemprop~=1.3.1, torch~=1.9.0+cu111

Citation


Lu, C.; Liu, S.; Shi, W.; Yu, J.; Zhou, Z.; Zhang, X.; Lu, X.; Cai, F.; Xia, N.; Wang, Y. Systemic Evolutionary Chemical Space Exploration For Drug Discovery. ChemRxiv 2021. This content is a preprint and has not been peer-reviewed.

License


SECSE is released under Apache License, Version 2.0.

You might also like...
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop
Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop

Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo

BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2

CoaDTI Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2 Abstract Environment The test was conducted i

The code for SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.

SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network'. Requirements py

[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer  from NNAISENSE.
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

Comments
  • Problem running demo

    Problem running demo

    Hi!

    When I try to run the demo with the command below. python $SECSE/run_secse.py --config demo/phgdh_demo_vina.ini

    It generates pandas.errors.EmptyDataError: No columns to parse from file, what should I do to solve it? Thank you!

    Here is the output

    **************************************************************************************** 
          ____    _____    ____   ____    _____ 
         / ___|  | ____|  / ___| / ___|  | ____|
         \___ \  |  _|   | |     \___ \  |  _|  
          ___) | | |___  | |___   ___) | | |___ 
         |____/  |_____|  \____| |____/  |_____|
    /home/bruce/Downloads/Softwares/Anaconda/envs/secse/lib/python3.7/site-packages/pandas/core/generic.py:2882: UserWarning: The spaces in these column names will not be changed. In pandas versions < 0.14, spaces were converted to underscores.
     method=method,
    Table 'G-001' already exists.
    
    ******************************************************************
    Input fragment file: /home/bruce/Work/CADD/SECSE/code/demo/demo_1020.smi
    Target grid file: /home/bruce/Work/CADD/SECSE/code/demo/PHGDH_6RJ3_for_vina.pdbqt
    Workdir: /home/bruce/Work/CADD/SECSE/code/res/
    
    
    ************************************************** 
    Generation  0 ...
    Step 1: Docking with Autodock Vina ...
    /home/bruce/Work/CADD/SECSE/code/secse/evaluate/ligprep_vina_parallel.sh /home/bruce/Work/CADD/SECSE/code/res/generation_0 /home/bruce/Work/CADD/SECSE/code/demo/demo_1020.smi /home/bruce/Work/CADD/SECSE/code/demo/PHGDH_6RJ3_for_vina.pdbqt 20.9 -10.4 3.0 20.0 20.0 25.0 10
    find /home/bruce/Work/CADD/SECSE/code/res/generation_0/sdf_files -name "*sdf" | xargs -n 100 cat > /home/bruce/Work/CADD/SECSE/code/res/generation_0/docking_outputs_with_score.sdf
    Docking time cost: 0.12 min.
    Step 2: Ranking docked molecules...
    9 cmpds after evaluate
    The evaluate score cutoff is: -9.0
    9 final seeds.
    
    ************************************************** 
    Generation  1 ...
    Step 1: Mutation
    No rule class:  B-001
    No rule class:  G-003
    No rule class:  G-004
    No rule class:  G-005
    No rule class:  G-006
    No rule class:  G-007
    No rule class:  M-001
    No rule class:  M-002
    No rule class:  M-003
    No rule class:  M-004
    No rule class:  M-005
    No rule class:  M-006
    No rule class:  M-007
    No rule class:  M-008
    No rule class:  M-009
    No rule class:  M-010
    No rule class: G-002
    Step 2: Filtering all mutated mols
    sh /home/bruce/Work/CADD/SECSE/code/secse/growing/filter_parallel.sh /home/bruce/Work/CADD/SECSE/code/res/generation_1 1 demo/phgdh_demo_vina.ini 10
    Filter runtime: 0.00 min.
    Traceback (most recent call last):
     File "/home/bruce/Work/CADD/SECSE/code/secse/run_secse.py", line 80, in <module>
       main()
     File "/home/bruce/Work/CADD/SECSE/code/secse/run_secse.py", line 65, in main
       workflow.grow()
     File "/home/bruce/Work/CADD/SECSE/code/secse/grow_processes.py", line 208, in grow
       self._filter_df = pd.read_csv(os.path.join(self.workdir_now, "filter.csv"), header=None)
     File "/home/bruce/Downloads/Softwares/Anaconda/envs/secse/lib/python3.7/site-packages/pandas/util/_decorators.py", line 311, in wrapper
       return func(*args, **kwargs)
     File "/home/bruce/Downloads/Softwares/Anaconda/envs/secse/lib/python3.7/site-packages/pandas/io/parsers/readers.py", line 586, in read_csv
       return _read(filepath_or_buffer, kwds)
     File "/home/bruce/Downloads/Softwares/Anaconda/envs/secse/lib/python3.7/site-packages/pandas/io/parsers/readers.py", line 482, in _read
       parser = TextFileReader(filepath_or_buffer, **kwds)
     File "/home/bruce/Downloads/Softwares/Anaconda/envs/secse/lib/python3.7/site-packages/pandas/io/parsers/readers.py", line 811, in __init__
       self._engine = self._make_engine(self.engine)
     File "/home/bruce/Downloads/Softwares/Anaconda/envs/secse/lib/python3.7/site-packages/pandas/io/parsers/readers.py", line 1040, in _make_engine
       return mapping[engine](self.f, **self.options)  # type: ignore[call-arg]
     File "/home/bruce/Downloads/Softwares/Anaconda/envs/secse/lib/python3.7/site-packages/pandas/io/parsers/c_parser_wrapper.py", line 69, in __init__
       self._reader = parsers.TextReader(self.handles.handle, **kwds)
     File "pandas/_libs/parsers.pyx", line 549, in pandas._libs.parsers.TextReader.__cinit__
    pandas.errors.EmptyDataError: No columns to parse from file
    
    opened by BW15061999 17
  • Question about running the demo code

    Question about running the demo code

    Hi authors,

    I have tried to run your demo code in README.md, but got some errors.

    Command

    python /home/xxx/workspace/off-SECSE/secse/run_secse.py --config ./config.ini
    

    Output

     **************************************************************************************** 
           ____    _____    ____   ____    _____ 
          / ___|  | ____|  / ___| / ___|  | ____|
          \___ \  |  _|   | |     \___ \  |  _|  
           ___) | | |___  | |___   ___) | | |___ 
          |____/  |_____|  \____| |____/  |_____|
    
    ******************************************************************
    Input fragment file: /home/xxx/workspace/off-SECSE/fy-run/demo001/ligand.smi
    Target grid file: /home/xxx/workspace/off-SECSE/fy-run/demo001/receptor.pdbqt
    Workdir: /home/xxx/workspace/off-SECSE/fy-run/demo001/
    
    Step 1: Docking with Autodock Vina ...
    /home/xxx/workspace/off-SECSE/secse/evaluate/ligprep_vina_parallel.sh /home/xxx/workspace/off-SECSE/fy-run/demo001/generation_0 /home/xxx/workspace/off-SECSE/fy-run/demo001/ligand.smi /home/t-yafan/workspace/off-SECSE/fy-run/demo001/receptor.pdbqt 20.9 -10.4 3.0 20.0 20.0 25.0 10
    find /home/xxx/workspace/off-SECSE/fy-run/demo001/generation_0/sdf_files -name "*sdf" | xargs -n 100 cat > /home/xxx/workspace/off-SECSE/fy-run/demo001/generation_0/docking_outputs_with_score.sdf
    Docking time cost: 0.11 min.
    Step 2: Ranking docked molecules...
    9 cmpds after evaluate
    The evaluate score cutoff is: -9.0
    9 final seeds.
    
     ************************************************** 
    Generation  1 ...
    Step 1: Mutation
    Traceback (most recent call last):
      File "/home/xxx/workspace/off-SECSE/secse/run_secse.py", line 70, in <module>
        main()
      File "/home/xxx/workspace/off-SECSE/secse/run_secse.py", line 55, in main
        workflow.grow()
      File "/home/xxx/workspace/off-SECSE/secse/grow_processes.py", line 159, in grow
        header = mutation_df(self.winner_df, self.workdir, self.cpu_num, self.gen)
      File "/home/xxx/workspace/off-SECSE/secse/growing/mutation/mutation.py", line 166, in mutation_df
        mutation = Mutation(5000, workdir)
      File "/home/xxx/workspace/off-SECSE/secse/growing/mutation/mutation.py", line 29, in __init__
        self.load_common_rules()
      File "/home/xxx/workspace/off-SECSE/secse/growing/mutation/mutation.py", line 50, in load_common_rules
        c.execute(sql)
    sqlite3.OperationalError: no such table: B-001
    

    It seems that the file secse/growing/mutation/rules_demo.db is missing in the repo. How can I fix it?

    Thanks!

    opened by fyabc 5
  • All dockings do not work because there's no gridding process.

    All dockings do not work because there's no gridding process.

    Hi, I was trying out the repo when I realised that neither the autodock nor glide is able to run because there was no gridding process, resulting in no grid files. >.<

    opened by yipy0005 3
Releases(v1.1.0)
SegNet-Basic with Keras

SegNet-Basic: What is Segnet? Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-wise Image Segmentation Segnet = (Encoder + Decoder)

Yad Konrad 81 Jun 30, 2022
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

Zain 1 Feb 01, 2022
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
LQM - Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstract Object detection aims to locate and classify object instances in ima

IM Lab., POSTECH 0 Sep 28, 2022
[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

DeepSurfels: Learning Online Appearance Fusion Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission DeepSurfel

Online Reconstruction 52 Nov 14, 2022
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Thomas Winters 36 Nov 15, 2022
Lightweight tool to perform MITM attack on local network

ARPSpy - A lightweight tool to perform MITM attack Using many library to perform ARP Spoof and auto-sniffing HTTP packet containing credential. (Never

MinhItachi 8 Aug 28, 2022
ICLR 2021: Pre-Training for Context Representation in Conversational Semantic Parsing

SCoRe: Pre-Training for Context Representation in Conversational Semantic Parsing This repository contains code for the ICLR 2021 paper "SCoRE: Pre-Tr

Microsoft 28 Oct 02, 2022
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
FFTNet vocoder implementation

Unofficial Implementation of FFTNet vocode paper. implement the model. implement tests. overfit on a single batch (sanity check). linearize weights fo

Eren Gölge 81 Dec 08, 2022
Message Passing on Cell Complexes

CW Networks This repository contains the code used for the papers Weisfeiler and Lehman Go Cellular: CW Networks (Under review) and Weisfeiler and Leh

Twitter Research 108 Jan 05, 2023
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022
TinyML Cookbook, published by Packt

TinyML Cookbook This is the code repository for TinyML Cookbook, published by Packt. Author: Gian Marco Iodice Publisher: Packt About the book This bo

Packt 93 Dec 29, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
A python library for time-series smoothing and outlier detection in a vectorized way.

tsmoothie A python library for time-series smoothing and outlier detection in a vectorized way. Overview tsmoothie computes, in a fast and efficient w

Marco Cerliani 517 Dec 28, 2022
Perturb-and-max-product: Sampling and learning in discrete energy-based models

Perturb-and-max-product: Sampling and learning in discrete energy-based models This repo contains code for reproducing the results in the paper Pertur

Vicarious 2 Mar 14, 2022
Table-Extractor 表格抽取

(t)able-(ex)tractor 本项目旨在实现pdf表格抽取。 Models 版面分析模块(Yolo) 表格结构抽取(ResNet + Transformer) 文字识别模块(CRNN + CTC Loss) Acknowledgements TableMaster attention-i

2 Jan 15, 2022