[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

Related tags

Deep Learningrapid
Overview

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning

This is the Tensorflow implementation of ICLR 2021 paper Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments. We propose a simple method RAPID for exploration through scroring the previous episodes and reproducing the good exploration behaviors with imitation learning. overview

The implementation is based on OpenAI baselines. For all the experiments, add the option --disable_rapid to see the baseline result. RAPID can achieve better performance and sample efficiency than state-of-the-art exploration methods on MiniGrid environments. rendering performance

Cite This Work

@inproceedings{
zha2021rank,
title={Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments},
author={Daochen Zha and Wenye Ma and Lei Yuan and Xia Hu and Ji Liu},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=MtEE0CktZht}
}

Installation

Please make sure that you have Python 3.5+ installed. First, clone the repo with

git clone https://github.com/daochenzha/rapid.git
cd rapid

Then install the dependencies with pip:

pip install -r requirements.txt
pip install -e .

To run MuJoCo experiments, you need to have the MuJoCo license. Install mujoco-py with

pip install mujoco-py==1.50.1.68

How to run the code

The entry is main.py. Some important hyperparameters are as follows.

  • --env: what environment to be used
  • --num_timesteps: the number of timesteps to be run
  • --w0: the weight of extrinsic reward score
  • --w1: the weight of local score
  • --w2: the weight of global score
  • --sl_until: do the RAPID update until which timestep
  • --disable_rapid: use it to compare with PPO baseline
  • --log_dir: the directory to save logs

Reproducing the result of MiniGrid environments

For MiniGrid-KeyCorridorS3R2, run

python main.py --env MiniGrid-KeyCorridorS3R2-v0 --sl_until 1200000

For MiniGrid-KeyCorridorS3R3, run

python main.py --env MiniGrid-KeyCorridorS3R3-v0 --sl_until 3000000

For other environments, run

python main.py --env $ENV

where $ENV is the environment name.

Run MiniWorld Maze environment

  1. Clone the latest master branch of MiniWorld and install it
git clone -b master --single-branch --depth=1 https://github.com/maximecb/gym-miniworld.git
cd gym-miniwolrd
pip install -e .
cd ..
  1. Start training with
python main.py --env MiniWorld-MazeS5-v0 --num_timesteps 5000000 --nsteps 512 --w1 0.00001 --w2 0.0 --log_dir results/MiniWorld-MazeS5-v0

For server without screens, you may install xvfb with

apt-get install xvfb

Then start training with

xvfb-run -a -s "-screen 0 1024x768x24 -ac +extension GLX +render -noreset" python main.py --env MiniWorld-MazeS5-v0 --num_timesteps 5000000 --nsteps 512 --w1 0.00001 --w2 0.0 --log_dir results/MiniWorld-MazeS5-v0

Run MuJoCo experiments

Run

python main.py --seed 0 --env $env --num_timesteps 5000000 --lr 5e-4 --w1 0.001 --w2 0.0 --log_dir logs/$ENV/rapid

where $ENV can be EpisodeSwimmer-v2, EpisodeHopper-v2, EpisodeWalker2d-v2, EpisodeInvertedPendulum-v2, DensityEpisodeSwimmer-v2, or ViscosityEpisodeSwimmer-v2.

Owner
Daochen Zha
PhD student in Machine Learning and Data Mining
Daochen Zha
Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image.

Deep Illuminator Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide

George Chogovadze 52 Nov 29, 2022
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
Largest list of models for Core ML (for iOS 11+)

Since iOS 11, Apple released Core ML framework to help developers integrate machine learning models into applications. The official documentation We'v

Kedan Li 5.6k Jan 08, 2023
Barlow Twins and HSIC

Barlow Twins and HSIC Unofficial Pytorch implementation for Barlow Twins and HSIC_SSL on small datasets (CIFAR10, STL10, and Tiny ImageNet). Correspon

Yao-Hung Hubert Tsai 49 Nov 24, 2022
Code for the Paper: Alexandra Lindt and Emiel Hoogeboom.

Discrete Denoising Flows This repository contains the code for the experiments presented in the paper Discrete Denoising Flows [1]. To give a short ov

Alexandra Lindt 3 Oct 09, 2022
A PyTorch implementation of SlowFast based on ICCV 2019 paper "SlowFast Networks for Video Recognition"

SlowFast A PyTorch implementation of SlowFast based on ICCV 2019 paper SlowFast Networks for Video Recognition. Requirements Anaconda PyTorch conda in

Hao Ren 8 Dec 23, 2022
paper list in the area of reinforcenment learning for recommendation systems

paper list in the area of reinforcenment learning for recommendation systems

HenryZhao 23 Jun 09, 2022
Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

SG-GAN TensorFlow implementation of SG-GAN. Prerequisites TensorFlow (implemented in v1.3) numpy scipy pillow Getting Started Train Prepare dataset. W

lplcor 61 Jun 07, 2022
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

g-parki 7 Jul 15, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022
Evaluating Privacy-Preserving Machine Learning in Critical Infrastructures: A Case Study on Time-Series Classification

PPML-TSA This repository provides all code necessary to reproduce the results reported in our paper Evaluating Privacy-Preserving Machine Learning in

Dominik 1 Mar 08, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
Implementation of Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021)

PSWE: Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021) PSWE is a permutation-invariant feature aggregation/pooling method based on sliced-Wasser

Navid Naderializadeh 3 May 06, 2022
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022
Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Zhengxia Zou 1.5k Dec 28, 2022
ICLR 2021: Pre-Training for Context Representation in Conversational Semantic Parsing

SCoRe: Pre-Training for Context Representation in Conversational Semantic Parsing This repository contains code for the ICLR 2021 paper "SCoRE: Pre-Tr

Microsoft 28 Oct 02, 2022
Codebase for the Summary Loop paper at ACL2020

Summary Loop This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples. Training

Canny Lab @ The University of California, Berkeley 44 Nov 04, 2022
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks

YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

Adam Van Etten 145 Jan 01, 2023
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022