Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

Overview

End-to-End Optimization of Scene Layout

Teaser Image Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral)

Project site, Bibtex

For help contact afluo [a.t] andrew.cmu.edu or open an issue

  • Requirements

    • Pytorch 1.2 (for everything)
    • Neural 3D Mesh Renderer - daniilidis version (for scene refinement only) For numerical stability, please modify projection.py to remove the multiplication by 0. After the change L33, L34 looks like:
    x__ = x_
    y__ = y_ 
    
    • Blender 2.79 (for 3D rendering of rooms only)
      • Please install numpy in Blender
    • matplotlib
    • numpy
    • skimage (for SPADE based shading)
    • imageio (for SPADE based shading)
    • shapely (eval only)
    • PyWavefront (for scene refinement only, loading of 3d meshes)
    • PyMesh (for scene refnement only, remeshing of SUNCG objects)
    • 1 Nvidia GPU

Download checkpoints here, download metadata here

Project structure
|-3d_SLN
  |-data
    |-suncg_dataset.py
      # Actual definition for the dataset object, makes batches of scene graphs
  |-metadata
    # SUNCG meta data goes here
    |-30_size_info_many.json
      # data about object size/volume, for 30/70 cutoff
    |-data_rot_train.json
      # Normalized object positions & rotations for training
    |-data_rot_val.json
      # For testing
    |-size_info_many.json
      # data about object size/volume, different cutoff
    |-valid_types.json
      # What object types we should use for making the scene graph
      # Caution when editing this, quite a bit is hard coded elsewhere
  |-models
    |-diff_render.py
      # Uses the Neural Mesh Renderer (Pytorch Version) to refine object positions
    |-graph.py
      # Graph network building blocks
    |-misc.py
      # Misc helper functions for the diff renderer
    |-Sg2ScVAE_model.py
      # Code to construct the VAE-graph network
    |-SPADE_related.py
      # Tools to construct SPADE VAE GAN (inference only)
  |-options
    # Global options
  |-render
    # Contains various "profiles" for Blender rendering
  |-testing
    # You must call batch_gen in test.py at least once
    # It will call into get_layouts_from_network in test_VAE.py
    # this will compute the posterior mean & std and cache it
    |-test_acc_mean_std.py
      # Contains helper functions to measure acc/l1/std 
    |-test_heatmap.py
      # Contains the functions *produce_heatmap* and *plot_heatmap*
      # The first function takes as input a verbally defined scene graph
        # If not provided, it uses a default scene graph with 5 objects
        # It will load weights for a VAE-graph network
        # Then load the computed posterior mean & std
        # And repeatedly sample from the given scene graph
        # Saves the results to a .pkl file
      # The second function will load a .pkl and plot them as heatmaps
    |-test_plot2d.py
      # Contains a function that uses matplotlib
      # Does NOT require SUNCG
      # Plots the objects using colors provided by ScanNet
    |-test_plot3d.py
      # Calls into the blender code in the ../render folder
      # Requires the SUNCG meshes
      # Requires Blender 2.79
      # Either uses the CPU (Blender renderer)
      # Or uses the GPU (Cycles renderer)
      # Loads a HDR texture (from HDRI Haven) for background
    |-test_SPADE_shade.py
      # Loads semantic maps & depth map, and produces RGB images using SPADE
    |-test_utils.py
      # Contains helper functions for testing
        # Of interest is the *get_sg_from_words* function
    |-test_VAE.py
  |-build_dataset_model.py
     # Constructs dataset & dataloader objects
     # Also constructs the VAE-graph network
  |-test.py
     # Provides functions which performs the following:
       # generation of layouts from scene graphs under the *batch_gen* argument
       # measure the accuracy of l1 loss, accuracy, std under the *measure_acc_l1_std* argument
       # draw the topdown heatmaps of layouts with a single scene graph under the *heat_map* argument
       # plot the topdown boxes of layouts with under the *draw_2d* argument
       # plot the viewer centric layouts using suncg meshes under the *draw_3d* argument
       # perform SPADE based shading of semantic+depth maps under the *gan_shade* argument
  |-train.py
     # Contains the training loop for the VAE-graph network
  |-utils.py
     # Contains various helper functions for:
       # managing network losses
       # make scene graphs from bounding boxes
       # load/write jsons
       # misc other stuff
  • Training the VAE-graph network (limited to 1 GPU):
    python train.py

  • Testing the VAE-graph network:
    First run python test.py --batch_gen at least once. This computes and caches a posterior for future sampling using the training set. It also generates a bunch of layouts using the test set.

  • To generate a heatmap:
    python test.py --heat_map
    You can either define your own scene graph (see the produce_heatmap function in testing/test_heatmap.py), if you do not provide one it will use the default one. The function will convert scene graphs defined using words into a format usable by the network.

  • To compute STD/L1/Acc:
    python test.py --measure_acc_l1_std

  • To plot the scene from a top down view with ScanNet colors (doesn't requrie SUNCG):
    python test.py --draw_2d
    Please provide a (O+1 x 6) tensor of bounding boxes, and a (O+1,) tensor of rotations. The last object should be the bounding box of the room

  • To plot 3D
    python test.py --draw_3d
    This calls into test_plot3d.py, which in turn launched Blender, and executes render_caller.py, you can put in specific rooms by editing this file. The full rendering function is located in render_room_color.py.

  • To use a neural renderer to refine a room
    python test.py --fine_tune Please select the indexes of the room in test.py. This will call into test_render_refine.py which uses the differentiable renderer located in diff_render.py. Learning rate, and loss types/weightings can be set in test_render_refine.py.
    We set a manual seed for demonstration purposes, in practice please remove this.

  • To use SPADE to generate texture/shading/lighting for a room from semantic + depth
    python test.py --gan_shade This will first call into semantic_depth_caller.py to produce the semantic and depth maps, then use SPADE to generate RGB images.

Citation

If you find this repo useful for your research, please consider citing the paper

@inproceedings{luo2020end,
  title={End-to-End Optimization of Scene Layout},
  author={Luo, Andrew and Zhang, Zhoutong and Wu, Jiajun and Tenenbaum, Joshua B},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={3754--3763},
  year={2020}
}
Owner
Andrew Luo
PhD student @ CMU
Andrew Luo
Learning Time-Critical Responses for Interactive Character Control

Learning Time-Critical Responses for Interactive Character Control Abstract This code implements the paper Learning Time-Critical Responses for Intera

Movement Research Lab 227 Dec 31, 2022
TDmatch is a Python library developed to perform matching tasks in three categories:

TDmatch TDmatch is a Python library developed to perform matching tasks in three categories: Text to Data which matches tuples of a table to text docu

Naser Ahmadi 5 Aug 11, 2022
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T

Taehoon Kim 569 Dec 29, 2022
2D&3D human pose estimation

Human Pose Estimation Papers [CVPR 2016] - 201511 [IJCAI 2016] - 201602 Other Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

133 Jan 02, 2023
《Lerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtion》

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation Overview This is the demo code for training a motion invariant enco

YuanBo 213 Dec 14, 2022
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022
Pca-on-genotypes - Mini bioinformatics project - PCA on genotypes

Mini bioinformatics project: PCA on genotypes This repo contains the code from t

Maria Nattestad 8 Dec 04, 2022
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
Instant-nerf-pytorch - NeRF trained SUPER FAST in pytorch

instant-nerf-pytorch This is WORK IN PROGRESS, please feel free to contribute vi

94 Nov 22, 2022
[ICCV 2021] Target Adaptive Context Aggregation for Video Scene Graph Generation

Target Adaptive Context Aggregation for Video Scene Graph Generation This is a PyTorch implementation for Target Adaptive Context Aggregation for Vide

Multimedia Computing Group, Nanjing University 44 Dec 14, 2022
Interactive web apps created using geemap and streamlit

geemap-apps Introduction This repo demostrates how to build a multi-page Earth Engine App using streamlit and geemap. You can deploy the app on variou

Qiusheng Wu 27 Dec 23, 2022
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks

What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of

DeepHyper Team 214 Jan 08, 2023
AugLiChem - The augmentation library for chemical systems.

AugLiChem Welcome to AugLiChem! The augmentation library for chemical systems. This package supports augmentation for both crystaline and molecular sy

BaratiLab 17 Jan 08, 2023
An exploration of log domain "alternative floating point" for hardware ML/AI accelerators.

This repository contains the SystemVerilog RTL, C++, HLS (Intel FPGA OpenCL to wrap RTL code) and Python needed to reproduce the numerical results in

Facebook Research 373 Dec 31, 2022
An open source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+. Including offline map and navigation.

Pi Zero Bikecomputer An open-source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+ https://github.com/hishizuka/pizero_bikecompute

hishizuka 264 Jan 02, 2023
Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Implicit Behavioral Cloning This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper: Impl

Google Research 210 Dec 09, 2022
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Collaborative Knowledge Distillation for Heterogeneous Information Network Embed

zhousheng 9 Dec 05, 2022
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022