This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

Overview

PyTorch Infer Utils

This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

To install

git clone https://github.com/gorodnitskiy/pytorch_infer_utils.git
pip install /path/to/pytorch_infer_utils/

Export PyTorch model to ONNX

  • Check model for denormal weights to achieve better performance. Use load_weights_rounded_model func to load model with weights rounding:
    from pytorch_infer_utils import load_weights_rounded_model
    
    model = ModelClass()
    load_weights_rounded_model(
        model,
        "/path/to/model_state_dict",
        map_location=map_location
    )
    
  • Use ONNXExporter.torch2onnx method to export pytorch model to ONNX:
    from pytorch_infer_utils import ONNXExporter
    
    model = ModelClass()
    model.load_state_dict(
        torch.load("/path/to/model_state_dict", map_location=map_location)
    )
    model.eval()
    
    exporter = ONNXExporter()
    input_shapes = [-1, 3, 224, 224] # -1 means that is dynamic shape
    exporter.torch2onnx(model, "/path/to/model.onnx", input_shapes)
    
  • Use ONNXExporter.optimize_onnx method to optimize ONNX via onnxoptimizer:
    from pytorch_infer_utils import ONNXExporter
    
    exporter = ONNXExporter()
    exporter.optimize_onnx("/path/to/model.onnx", "/path/to/optimized_model.onnx")
    
  • Use ONNXExporter.optimize_onnx_sim method to optimize ONNX via onnx-simplifier. Be careful with onnx-simplifier not to lose dynamic shapes.
    from pytorch_infer_utils import ONNXExporter
    
    exporter = ONNXExporter()
    exporter.optimize_onnx_sim("/path/to/model.onnx", "/path/to/optimized_model.onnx")
    
  • Also, a method combined the above methods is available ONNXExporter.torch2optimized_onnx:
    from pytorch_infer_utils import ONNXExporter
    
    model = ModelClass()
    model.load_state_dict(
        torch.load("/path/to/model_state_dict", map_location=map_location)
    )
    model.eval()
    
    exporter = ONNXExporter()
    input_shapes = [-1, 3, -1, -1] # -1 means that is dynamic shape
    exporter.torch2optimized_onnx(model, "/path/to/model.onnx", input_shapes)
    
  • Other params that can be used in class initialization:
    • default_shapes: default shapes if dimension is dynamic, default = [1, 3, 224, 224]
    • onnx_export_params:
      • export_params: store the trained parameter weights inside the model file, default = True
      • do_constant_folding: whether to execute constant folding for optimization, default = True
      • input_names: the model's input names, default = ["input"]
      • output_names: the model's output names, default = ["output"]
      • opset_version: the ONNX version to export the model to, default = 11
    • onnx_optimize_params:
      • fixed_point: use fixed point, default = False
      • passes: optimization passes, default = [ "eliminate_deadend", "eliminate_duplicate_initializer", "eliminate_identity", "eliminate_if_with_const_cond", "eliminate_nop_cast", "eliminate_nop_dropout", "eliminate_nop_flatten", "eliminate_nop_monotone_argmax", "eliminate_nop_pad", "eliminate_nop_transpose", "eliminate_unused_initializer", "extract_constant_to_initializer", "fuse_add_bias_into_conv", "fuse_bn_into_conv", "fuse_consecutive_concats", "fuse_consecutive_log_softmax", "fuse_consecutive_reduce_unsqueeze", "fuse_consecutive_squeezes", "fuse_consecutive_transposes", "fuse_matmul_add_bias_into_gemm", "fuse_pad_into_conv", "fuse_transpose_into_gemm", "lift_lexical_references", "nop" ]

Export ONNX to TensorRT

  • Check TensorRT health via check_tensorrt_health func
  • Use TRTEngineBuilder.build_engine method to export ONNX to TensorRT:
    from pytorch_infer_utils import TRTEngineBuilder
    
    exporter = TRTEngineBuilder()
    # get engine by itself
    engine = exporter.build_engine("/path/to/model.onnx")
    # or save engine to /path/to/model.trt
    exporter.build_engine("/path/to/model.onnx", engine_path="/path/to/model.trt")
    
  • fp16_mode is available:
    from pytorch_infer_utils import TRTEngineBuilder
    
    exporter = TRTEngineBuilder()
    engine = exporter.build_engine("/path/to/model.onnx", fp16_mode=True)
    
  • int8_mode is available. It requires calibration_set of images as List[Any], load_image_func - func to correctly read and process images, max_image_shape - max image size as [C, H, W] to allocate correct size of memory:
    from pytorch_infer_utils import TRTEngineBuilder
    
    exporter = TRTEngineBuilder()
    engine = exporter.build_engine(
        "/path/to/model.onnx",
        int8_mode=True,
        calibration_set=calibration_set,
        max_image_shape=max_image_shape,
        load_image_func=load_image_func,
    )
    
  • Also, additional params for builder config builder.create_builder_config can be put to kwargs.
  • Other params that can be used in class initialization:
    • opt_shape_dict: optimal shapes, default = {'input': [[1, 3, 224, 224], [1, 3, 224, 224], [1, 3, 224, 224]]}
    • max_workspace_size: max workspace size, default = [1, 30]
    • stream_batch_size: batch size for forward network during transferring to int8, default = 100
    • cache_file: int8_mode cache filename, default = "model.trt.int8calibration"

Inference via onnxruntime on CPU and onnx_tensort on GPU

  • Base class ONNXWrapper __init__ has the structure as below:
    def __init__(
        self,
        onnx_path: str,
        gpu_device_id: Optional[int] = None,
        intra_op_num_threads: Optional[int] = 0,
        inter_op_num_threads: Optional[int] = 0,
    ) -> None:
        """
        :param onnx_path: onnx-file path, required
        :param gpu_device_id: gpu device id to use, default = 0
        :param intra_op_num_threads: ort_session_options.intra_op_num_threads,
            to let onnxruntime choose by itself is required 0, default = 0
        :param inter_op_num_threads: ort_session_options.inter_op_num_threads,
            to let onnxruntime choose by itself is required 0, default = 0
        :type onnx_path: str
        :type gpu_device_id: int
        :type intra_op_num_threads: int
        :type inter_op_num_threads: int
        """
        if gpu_device_id is None:
            import onnxruntime
    
            self.is_using_tensorrt = False
            ort_session_options = onnxruntime.SessionOptions()
            ort_session_options.intra_op_num_threads = intra_op_num_threads
            ort_session_options.inter_op_num_threads = inter_op_num_threads
            self.ort_session = onnxruntime.InferenceSession(
                onnx_path, ort_session_options
            )
    
        else:
            import onnx
            import onnx_tensorrt.backend as backend
    
            self.is_using_tensorrt = True
            model_proto = onnx.load(onnx_path)
            for gr_input in model_proto.graph.input:
                gr_input.type.tensor_type.shape.dim[0].dim_value = 1
    
            self.engine = backend.prepare(
                model_proto, device=f"CUDA:{gpu_device_id}"
            )
    
  • ONNXWrapper.run method assumes the use of such a structure:
    img = self._process_img_(img)
    if self.is_using_tensorrt:
        preds = self.engine.run(img)
    else:
        ort_inputs = {self.ort_session.get_inputs()[0].name: img}
        preds = self.ort_session.run(None, ort_inputs)
    
    preds = self._process_preds_(preds)
    

Inference via onnxruntime on CPU and TensorRT on GPU

  • Base class TRTWrapper __init__ has the structure as below:
    def __init__(
        self,
        onnx_path: Optional[str] = None,
        trt_path: Optional[str] = None,
        gpu_device_id: Optional[int] = None,
        intra_op_num_threads: Optional[int] = 0,
        inter_op_num_threads: Optional[int] = 0,
        fp16_mode: bool = False,
    ) -> None:
        """
        :param onnx_path: onnx-file path, default = None
        :param trt_path: onnx-file path, default = None
        :param gpu_device_id: gpu device id to use, default = 0
        :param intra_op_num_threads: ort_session_options.intra_op_num_threads,
            to let onnxruntime choose by itself is required 0, default = 0
        :param inter_op_num_threads: ort_session_options.inter_op_num_threads,
            to let onnxruntime choose by itself is required 0, default = 0
        :param fp16_mode: use fp16_mode if class initializes only with
            onnx_path on GPU, default = False
        :type onnx_path: str
        :type trt_path: str
        :type gpu_device_id: int
        :type intra_op_num_threads: int
        :type inter_op_num_threads: int
        :type fp16_mode: bool
        """
        if gpu_device_id is None:
            import onnxruntime
    
            self.is_using_tensorrt = False
            ort_session_options = onnxruntime.SessionOptions()
            ort_session_options.intra_op_num_threads = intra_op_num_threads
            ort_session_options.inter_op_num_threads = inter_op_num_threads
            self.ort_session = onnxruntime.InferenceSession(
                onnx_path, ort_session_options
            )
    
        else:
            self.is_using_tensorrt = True
            if trt_path is None:
                builder = TRTEngineBuilder()
                trt_path = builder.build_engine(onnx_path, fp16_mode=fp16_mode)
    
            self.trt_session = TRTRunWrapper(trt_path)
    
  • TRTWrapper.run method assumes the use of such a structure:
    img = self._process_img_(img)
    if self.is_using_tensorrt:
        preds = self.trt_session.run(img)
    else:
        ort_inputs = {self.ort_session.get_inputs()[0].name: img}
        preds = self.ort_session.run(None, ort_inputs)
    
    preds = self._process_preds_(preds)
    

Environment

TensorRT

  • TensorRT installing guide is here
  • Required CUDA-Runtime, CUDA-ToolKit
  • Also, required additional python packages not included to setup.cfg (it depends upon CUDA environment version):
    • pycuda
    • nvidia-tensorrt
    • nvidia-pyindex

onnx_tensorrt

  • onnx_tensorrt requires cuda-runtime and tensorrt.
  • To install:
    git clone --depth 1 --branch 21.02 https://github.com/onnx/onnx-tensorrt.git
    cd onnx-tensorrt
    cp -r onnx_tensorrt /usr/local/lib/python3.8/dist-packages
    cd ..
    rm -rf onnx-tensorrt
    
Owner
Alex Gorodnitskiy
Computer Vision Engineer ๐Ÿค–
Alex Gorodnitskiy
Near-Duplicate Video Retrieval with Deep Metric Learning

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

2 Jan 24, 2022
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
Hands-On Machine Learning for Algorithmic Trading, published by Packt

Hands-On Machine Learning for Algorithmic Trading Hands-On Machine Learning for Algorithmic Trading, published by Packt This is the code repository fo

Packt 981 Dec 29, 2022
This is the implementation of GGHL (A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection)

GGHL: A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection This is the implementation of GGHL ๐Ÿ‘‹ ๐Ÿ‘‹ ๐Ÿ‘‹ [Arxiv] [Google Drive][B

551 Dec 31, 2022
We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble

Qing Guo 146 Dec 31, 2022
for taichi voxel-challange event

Taichi Voxel Challenge Figure: result of python3 example6.py. Please replace the image above (demo.jpg) with yours, so that other people can immediate

Liming Xu 20 Nov 26, 2022
Simulation environments for the CrazyFlie quadrotor: Used for Reinforcement Learning and Sim-to-Real Transfer

Phoenix-Drone-Simulation An OpenAI Gym environment based on PyBullet for learning to control the CrazyFlie quadrotor: Can be used for Reinforcement Le

Sven Gronauer 8 Dec 07, 2022
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
MolRep: A Deep Representation Learning Library for Molecular Property Prediction

MolRep: A Deep Representation Learning Library for Molecular Property Prediction Summary MolRep is a Python package for fairly measuring algorithmic p

AI-Health @NSCC-gz 83 Dec 24, 2022
[arXiv] What-If Motion Prediction for Autonomous Driving โ“๐Ÿš—๐Ÿ’จ

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
Easy way to add GoogleMaps to Flask applications. maintainer: @getcake

Flask Google Maps Easy to use Google Maps in your Flask application requires Jinja Flask A google api key get here Contribute To contribute with the p

Flask Extensions 611 Dec 05, 2022
TAPEX: Table Pre-training via Learning a Neural SQL Executor

TAPEX: Table Pre-training via Learning a Neural SQL Executor The official repository which contains the code and pre-trained models for our paper TAPE

Microsoft 157 Dec 28, 2022
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
Minimalistic PyTorch training loop

Backbone for PyTorch training loop Will try to keep it minimalistic. pip install back from back import Bone Features Progress bar Checkpoints saving/l

Kashin 4 Jan 16, 2020
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a building extraction plugin of QGIS based on PaddlePaddle. TODO Extract building on 512x512 remote sensing images. Extract build

Yizhou Chen 11 Sep 26, 2022
Nightmare-Writeup - Writeup for the Nightmare CTF Challenge from 2022 DiceCTF

Nightmare: One Byte to ROP // Alternate Solution TLDR: One byte write, no leak.

1 Feb 17, 2022
DilatedNet in Keras for image segmentation

Keras implementation of DilatedNet for semantic segmentation A native Keras implementation of semantic segmentation according to Multi-Scale Context A

303 Mar 15, 2022
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

LiDAR fog simulation Created by Martin Hahner at the Computer Vision Lab of ETH Zurich. This is the official code release of the paper Fog Simulation

Martin Hahner 110 Dec 30, 2022
โšก๏ธOptimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.

Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum

Daniel Smith 653 Dec 30, 2022