Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Overview

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Paper on arXiv

Public PyTorch implementation of two-stage peer-regularized feature recombination for arbitrary image style transfer presented at CVPR 2020. The model is trained on a selected set painters and generalizes well even to previously unseen style during testing.

Structure

The repository contains the code that we have used to produce some of the main results in the paper. We have left out additional modifications that were used to generate the ablation studies, etc.

Running examples

In order to get reasonable runtime, the code has to be run on a GPU. The code is multi-gpu ready. We have used 2 GPUs for training and a single GPU during test time. We have been running our code on a Nvidia Titan X (Pascal) 12GB GPU. Basic system requirements are to be found here.

Should you encounter some issues running the code, please first check Known issues and then consider opening a new issue in this repository.

Model training

The provided pre-trained model was trained by running the following command:

python train.py --dataroot photo2painter13 --checkpoints_dir=./checkpoints --dataset_mode=painters13 --name GanAuxModel --model gan_aux
--netG=resnet_residual --netD=disc_noisy --display_env=GanAuxModel --gpu_ids=0,1 --lambda_gen=1.0 --lambda_disc=1.0 --lambda_cycle=1.0
--lambda_cont=1.0 --lambda_style=1.0 --lambda_idt=25.0 --num_style_samples=1 --batch_size=2 --num_threads=8 --fineSize=256 --loadSize=286
--mapping_mode=one_to_all --knn=5 --ml_margin=1.0 --lr=4e-4 --peer_reg=bidir --print_freq=500 --niter=50 --niter_decay=150 --no_html

Model testing

We provide one pre-trained model that you can run and stylize images. The example below will use sample content and style images from the samples/data folder.

The pretrained model was trained on images with resolution 256 x 256, during test time it can however operate on images of arbitrary size. Current memory limitations restrict us to run images of size up to 768 x 768.

python test.py --checkpoints_dir=./samples/models --name GanAuxPretrained --model gan_aux --netG=resnet_residual --netD=disc_noisy
--gpu_ids=0 --num_style_samples=1 --loadSize=512 --fineSize=512 --knn=5 --peer_reg=bidir --epoch=200 --content_folder content_imgs
--style_folder style_imgs --output_folder out_imgs

Datasets

The full dataset that we have used for training is the same one as in this work.

Results

Comparison to existing approaches

Comparison image

Ablation study

Ablation image

Reference

If you make any use of our code or data, please cite the following:

@conference{svoboda2020twostage,
  title={Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer},
  author={Svoboda, J. and Anoosheh, A. and Osendorfer, Ch. and Masci, J.},
  booktitle={Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2020}
}

Acknowledgments

The code in this repository is based on pytorch-CycleGAN.

For any reuse and or redistribution of the code in this repository please follow the license agreement attached to this repository.

Owner
NNAISENSE
NNAISENSE
Automatic Video Captioning Evaluation Metric --- EMScore

Automatic Video Captioning Evaluation Metric --- EMScore Overview For an illustration, EMScore can be computed as: Installation modify the encode_text

Yaya Shi 17 Nov 28, 2022
Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it

Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.

mani 1.2k Jan 07, 2023
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
Code for "OctField: Hierarchical Implicit Functions for 3D Modeling (NeurIPS 2021)"

OctField(Jittor): Hierarchical Implicit Functions for 3D Modeling Introduction This repository is code release for OctField: Hierarchical Implicit Fun

55 Dec 08, 2022
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023
Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)

On Path Integration of Grid Cells: Group Representation and Isotropic Scaling This repo contains the official implementation for the paper On Path Int

Ruiqi Gao 39 Nov 10, 2022
Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Thang Vu 15 Dec 02, 2022
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022
🐥A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI

PyTorch implementation of OpenAI's Finetuned Transformer Language Model This is a PyTorch implementation of the TensorFlow code provided with OpenAI's

Hugging Face 1.4k Jan 05, 2023
Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

SMPLify-XMC This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright Lic

Lea Müller 83 Dec 14, 2022
NAVER BoostCamp Final Project

CV 14조 final project Super Resolution and Deblur module Inference code & Pretrained weight Repo SwinIR Deblur 실행 방법 streamlit run WebServer/Server_SRD

JiSeong Kim 5 Sep 06, 2022
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
coldcuts is an R package to automatically generate and plot segmentation drawings in R

coldcuts coldcuts is an R package that allows you to draw and plot automatically segmentations from 3D voxel arrays. The name is inspired by one of It

2 Sep 03, 2022
Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification Official Implementation for the pape

Anh M. Nguyen 36 Dec 28, 2022
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection"

Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection". LRPDenseNet.py

Pedro Ricardo Ariel Salvador Bassi 2 Sep 21, 2022