Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Overview

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Paper on arXiv

Public PyTorch implementation of two-stage peer-regularized feature recombination for arbitrary image style transfer presented at CVPR 2020. The model is trained on a selected set painters and generalizes well even to previously unseen style during testing.

Structure

The repository contains the code that we have used to produce some of the main results in the paper. We have left out additional modifications that were used to generate the ablation studies, etc.

Running examples

In order to get reasonable runtime, the code has to be run on a GPU. The code is multi-gpu ready. We have used 2 GPUs for training and a single GPU during test time. We have been running our code on a Nvidia Titan X (Pascal) 12GB GPU. Basic system requirements are to be found here.

Should you encounter some issues running the code, please first check Known issues and then consider opening a new issue in this repository.

Model training

The provided pre-trained model was trained by running the following command:

python train.py --dataroot photo2painter13 --checkpoints_dir=./checkpoints --dataset_mode=painters13 --name GanAuxModel --model gan_aux
--netG=resnet_residual --netD=disc_noisy --display_env=GanAuxModel --gpu_ids=0,1 --lambda_gen=1.0 --lambda_disc=1.0 --lambda_cycle=1.0
--lambda_cont=1.0 --lambda_style=1.0 --lambda_idt=25.0 --num_style_samples=1 --batch_size=2 --num_threads=8 --fineSize=256 --loadSize=286
--mapping_mode=one_to_all --knn=5 --ml_margin=1.0 --lr=4e-4 --peer_reg=bidir --print_freq=500 --niter=50 --niter_decay=150 --no_html

Model testing

We provide one pre-trained model that you can run and stylize images. The example below will use sample content and style images from the samples/data folder.

The pretrained model was trained on images with resolution 256 x 256, during test time it can however operate on images of arbitrary size. Current memory limitations restrict us to run images of size up to 768 x 768.

python test.py --checkpoints_dir=./samples/models --name GanAuxPretrained --model gan_aux --netG=resnet_residual --netD=disc_noisy
--gpu_ids=0 --num_style_samples=1 --loadSize=512 --fineSize=512 --knn=5 --peer_reg=bidir --epoch=200 --content_folder content_imgs
--style_folder style_imgs --output_folder out_imgs

Datasets

The full dataset that we have used for training is the same one as in this work.

Results

Comparison to existing approaches

Comparison image

Ablation study

Ablation image

Reference

If you make any use of our code or data, please cite the following:

@conference{svoboda2020twostage,
  title={Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer},
  author={Svoboda, J. and Anoosheh, A. and Osendorfer, Ch. and Masci, J.},
  booktitle={Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2020}
}

Acknowledgments

The code in this repository is based on pytorch-CycleGAN.

For any reuse and or redistribution of the code in this repository please follow the license agreement attached to this repository.

Owner
NNAISENSE
NNAISENSE
An official implementation of the Anchor DETR.

Anchor DETR: Query Design for Transformer-Based Detector Introduction This repository is an official implementation of the Anchor DETR. We encode the

MEGVII Research 276 Dec 28, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Jan 04, 2023
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
Do Neural Networks for Segmentation Understand Insideness?

This is part of the code to reproduce the results of the paper Do Neural Networks for Segmentation Understand Insideness? [pdf] by K. Villalobos (*),

biolins 0 Mar 20, 2021
Deep Learning segmentation suite designed for 2D microscopy image segmentation

Deep Learning segmentation suite dessigned for 2D microscopy image segmentation This repository provides researchers with a code to try different enco

7 Nov 03, 2022
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022
[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

MonoRUn MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 96 Dec 10, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

176 Jan 05, 2023
Efficient 6-DoF Grasp Generation in Cluttered Scenes

Contact-GraspNet Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter

NVIDIA Research Projects 148 Dec 28, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Jeff Levesque 252 Dec 11, 2022
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
A Pytorch implement of paper "Anomaly detection in dynamic graphs via transformer" (TADDY).

TADDY: Anomaly detection in dynamic graphs via transformer This repo covers an reference implementation for the paper "Anomaly detection in dynamic gr

Yue Tan 21 Nov 24, 2022
Official implementation of the method ContIG, for self-supervised learning from medical imaging with genomics

ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics This is the code implementation of the paper "ContIG: Self-s

Digital Health & Machine Learning 22 Dec 13, 2022
SAS: Self-Augmentation Strategy for Language Model Pre-training

SAS: Self-Augmentation Strategy for Language Model Pre-training This repository

Alibaba 5 Nov 02, 2022
Pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering".

TRAnsformer Routing Networks (TRAR) This is an official implementation for ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visu

Ren Tianhe 49 Nov 10, 2022