Data pipelines for both TensorFlow and PyTorch!

Overview

rapidnlp-datasets

Python package PyPI version Python

Data pipelines for both TensorFlow and PyTorch !

If you want to load public datasets, try:

If you want to load local, personal dataset with minimized boilerplate, use rapidnlp-datasets!

installation

pip install -U rapidnlp-datasets

If you work with PyTorch, you should install PyTorch first.

If you work with TensorFlow, you should install TensorFlow first.

Usage

Here are few examples to show you how to use this library.

sequence-classification-quickstart

In PyTorch,

>>> import torch
>>> from rapidnlp_datasets.pt import DatasetForSequenceClassification
>>> dataset = DatasetForSequenceClassification.from_jsonl_files(
        input_files=["testdata/sequence_classification.jsonl"],
        vocab_file="testdata/vocab.txt",
    )
>>> dataloader = torch.utils.data.DataLoader(dataset, shuffle=True, batch_size=32, collate_fn=dataset.batch_padding_collate)
>>> for idx, batch in enumerate(dataloader):
...     print("No.{} batch: \n{}".format(idx, batch))
... 

In TensorFlow,

>>> from rapidnlp_datasets.tf import TFDatasetForSequenceClassifiation
>>> dataset, d = TFDatasetForSequenceClassifiation.from_jsonl_files(
        input_files=["testdata/sequence_classification.jsonl"],
        vocab_file="testdata/vocab.txt",
        return_self=True,
    )
>>> for idx, batch in enumerate(iter(dataset)):
...     print("No.{} batch: \n{}".format(idx, batch))
... 

Especially, you can save dataset to tfrecord format when working with TensorFlow, and then build dataset from tfrecord files directly!

>>> d.save_tfrecord("testdata/sequence_classification.tfrecord")
2021-12-08 14:52:41,295    INFO             utils.py  128] Finished to write 2 examples to tfrecords.
>>> dataset = TFDatasetForSequenceClassifiation.from_tfrecord_files("testdata/sequence_classification.tfrecord")
>>> for idx, batch in enumerate(iter(dataset)):
...     print("No.{} batch: \n{}".format(idx, batch))
... 

question-answering-quickstart

In PyTorch:

>>> import torch
>>> from rapidnlp_datasets.pt import DatasetForQuestionAnswering
>>>
>>> dataset = DatasetForQuestionAnswering.from_jsonl_files(
        input_files="testdata/qa.jsonl",
        vocab_file="testdata/vocab.txt",
    )
>>> dataloader = torch.utils.data.DataLoader(dataset, shuffle=True, batch_size=32, collate_fn=dataset.batch_padding_collate)
>>> for idx, batch in enumerate(dataloader):
...     print("No.{} batch: \n{}".format(idx, batch))
... 

In TensorFlow,

>>> from rapidnlp_datasets.tf import TFDatasetForQuestionAnswering
>>> dataset, d = TFDatasetForQuestionAnswering.from_jsonl_files(
        input_files="testdata/qa.jsonl",
        vocab_file="testdata/vocab.txt",
        return_self=True,
    )
2021-12-08 15:09:06,747    INFO question_answering_dataset.py  101] Read 3 examples in total.
>>> for idx, batch in enumerate(iter(dataset)):
        print()
        print("NO.{} batch: \n{}".format(idx, batch))
... 

Especially, you can save dataset to tfrecord format when working with TensorFlow, and then build dataset from tfrecord files directly!

>>> d.save_tfrecord("testdata/qa.tfrecord")
2021-12-08 15:09:31,329    INFO             utils.py  128] Finished to write 3 examples to tfrecords.
>>> dataset = TFDatasetForQuestionAnswering.from_tfrecord_files(
        "testdata/qa.tfrecord",
        batch_size=32,
        padding="batch",
    )
>>> for idx, batch in enumerate(iter(dataset)):
        print()
        print("NO.{} batch: \n{}".format(idx, batch))
... 

token-classification-quickstart

masked-language-models-quickstart

simcse-quickstart

You might also like...
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

🤗 Push your spaCy pipelines to the Hugging Face Hub
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

Machine learning framework for both deep learning and traditional algorithms
Machine learning framework for both deep learning and traditional algorithms

NeoML is an end-to-end machine learning framework that allows you to build, train, and deploy ML models. This framework is used by ABBYY engineers for

CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

A transformer which can randomly augment VOC format dataset (both image and bbox) online.
A transformer which can randomly augment VOC format dataset (both image and bbox) online.

VocAug It is difficult to find a script which can augment VOC-format dataset, especially the bbox. Or find a script needs complex requirements so it i

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Releases(v0.2.0)
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
[Arxiv preprint] Causality-inspired Single-source Domain Generalization for Medical Image Segmentation (code&data-processing pipeline)

Causality-inspired Single-source Domain Generalization for Medical Image Segmentation Arxiv preprint Repository under construction. Might still be bug

Cheng 31 Dec 27, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

Elisabeth Roesch 55 Dec 02, 2022
PromptDet: Expand Your Detector Vocabulary with Uncurated Images

PromptDet: Expand Your Detector Vocabulary with Uncurated Images Paper Website Introduction The goal of this work is to establish a scalable pipeline

103 Dec 20, 2022
Acute ischemic stroke dataset

AISD Acute ischemic stroke dataset contains 397 Non-Contrast-enhanced CT (NCCT) scans of acute ischemic stroke with the interval from symptom onset to

Kongming Liang 21 Sep 06, 2022
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
통일된 DataScience 폴더 구조 제공 및 가상환경 작업의 부담감 해소

Lucas coded by linux shell 목차 Mac버전 CookieCutter (autoenv) 1.How to Install autoenv 2.폴더 진입 시, activate 구현하기 3.폴더 탈출 시, deactivate 구현하기 4.Alias 설정하기 5

ello 3 Feb 21, 2022
Official pytorch implementation of the AAAI 2021 paper Semantic Grouping Network for Video Captioning

Semantic Grouping Network for Video Captioning Hobin Ryu, Sunghun Kang, Haeyong Kang, and Chang D. Yoo. AAAI 2021. [arxiv] Environment Ubuntu 16.04 CU

Hobin Ryu 43 Nov 25, 2022
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Thomas Winters 36 Nov 15, 2022
Jremesh-tools - Blender addon for quad remeshing

JRemesh Tools Blender 2.8 - 3.x addon for quad remeshing. Currently it is a wrap

Jayanam 89 Dec 30, 2022
PaddleBoBo是基于PaddlePaddle和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目

PaddleBoBo - 元宇宙时代,你也可以动手做一个虚拟主播。 PaddleBoBo是基于飞桨PaddlePaddle深度学习框架和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目。PaddleBoBo致力于简单高效、可复用性强,只需要一张带人像的图片和一段文字,就能

502 Jan 08, 2023
PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion

MarkovGNN This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusi

HipGraph: High-Performance Graph Analytics and Learning 6 Sep 23, 2022
AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition

AdaFocus (ICCV 2021) This repo contains the official code and pre-trained models for AdaFocus. Adaptive Focus for Efficient Video Recognition Referenc

Rainforest Wang 115 Dec 21, 2022
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022