PSPNet in Chainer

Overview

PSPNet

This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer.

Training

Requirement

  • Python 3.4.4+
    • Chainer 3.0.0b1+
    • ChainerMN master
    • CuPy 2.0.0b1+
    • ChainerCV 0.6.0+
    • NumPy 1.12.0+
    • tqdm 4.11.0+
pip install chainer --pre
pip install cupy --pre
pip install git+git://github.com/chainer/chainermn
pip install git+git://github.com/chainer/chainercv
pip install tqdm

Inference using converted weights

Requirement

  • Python 3.4.4+
    • Chainer 3.0.0b1+
    • ChainerCV 0.6.0+
    • Matplotlib 2.0.0+
    • CuPy 2.0.0b1+
    • tqdm 4.11.0+

1. Run demo.py

Cityscapes

$ python demo.py -g 0 -m cityscapes -f aachen_000000_000019_leftImg8bit.png

Pascal VOC2012

$ python demo.py -g 0 -m voc2012 -f 2008_000005.jpg

ADE20K

$ python demo.py -g 0 -m ade20k -f ADE_val_00000001.jpg

FAQ

If you get RuntimeError: Invalid DISPLAY variable, how about specifying the matplotlib's backend by an environment variable?

$ MPLBACKEND=Agg python demo.py -g 0 -m cityscapes -f aachen_000000_000019_leftImg8bit.png

Convert weights by yourself

Caffe is NOT needed to convert .caffemodel to Chainer model. Use caffe_pb2.py.

Requirement

  • Python 3.4.4+
    • protobuf 3.2.0+
    • Chainer 3.0.0b1+
    • NumPy 1.12.0+

1. Download the original weights

Please download the weights below from the author's repository:

and then put them into weights directory.

2. Convert weights

$ python convert.py

Reference

  • The original implementation by authors is: hszhao/PSPNet
  • The original paper is:
    • Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia, "Pyramid Scene Parsing Network", Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017
You might also like...
Comments
  • Training failes with ModuleNotFoundError when using train_mn.py

    Training failes with ModuleNotFoundError when using train_mn.py

    Hi, I got following error when I tried to train PSP net with your train_mn.py How can I train my PSPNet model?

    [email protected]:/yendo/oss/chainer-pspnet# python3 train_mn.py --result_dir result configs/cityscapes/pspnet.yml
    Warning: using naive communicator because only naive supports CPU-only execution
    ==========================================
    Num process (COMM_WORLD): 1
    Using single_node communicator
    Chainer version: 3.4.0
    ChainerMN version: 1.2.0
    cuda: True, cudnn: True
    result_dir: result
    Traceback (most recent call last):
      File "train_mn.py", line 504, in <module>
        trainer = get_trainer(args)
      File "train_mn.py", line 374, in get_trainer
        model = get_model_from_config(config, comm)
      File "train_mn.py", line 239, in get_model_from_config
        loss.module, loss.name, loss.args, comm)
      File "train_mn.py", line 219, in get_model
        mod = import_module(loss_module)
      File "/root/.pyenv/versions/anaconda3-5.0.1/lib/python3.6/importlib/__init__.py", line 126, in import_module
        return _bootstrap._gcd_import(name[level:], package, level)
      File "<frozen importlib._bootstrap>", line 994, in _gcd_import
      File "<frozen importlib._bootstrap>", line 971, in _find_and_load
      File "<frozen importlib._bootstrap>", line 941, in _find_and_load_unlocked
      File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed
      File "<frozen importlib._bootstrap>", line 994, in _gcd_import
      File "<frozen importlib._bootstrap>", line 971, in _find_and_load
      File "<frozen importlib._bootstrap>", line 953, in _find_and_load_unlocked
    ModuleNotFoundError: No module named 'loss'
    
    opened by jo7ueb 0
  • Training Fails with IndexError when using train.py

    Training Fails with IndexError when using train.py

    Hi, I got following error when I tried to train PSP net with your train.py How can I train my PSPNet model?

    [email protected]:/yendo/oss/chainer-pspnet# python3 train.py --gpu --result_dir result configs/cityscapes/pspnet.yml
    ==========================================
    Chainer version: 3.4.0
    CuPy version: 2.4.0
    Traceback (most recent call last):
      File "train.py", line 483, in <module>
        trainer = get_trainer(args)
      File "train.py", line 339, in get_trainer
        chainer.cuda.available, chainer.cuda.cudnn_enabled, ))
    IndexError: tuple index out of range
    
    opened by jo7ueb 0
  • could you actually train a new model?

    could you actually train a new model?

    Hi, I am currently trying to train the cityscapes dataset with your code, but the result is miserable: still 0.5263158 (=1/19) class accuracy after 120 epochs. Apparently, the loss of training data is converged correctly, so it seems like a perfect over fitting. Since I used the same settings as yours, i am wondering how you managed to reproduce the results(maybe i need less learning rate?). thanks in advance!

    opened by suzukikbp 0
Owner
Shunta Saito
Ph.D in Engineering, Researcher at Preferred Networks, Inc.
Shunta Saito
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

deargen 11 Nov 19, 2022
DA2Lite is an automated model compression toolkit for PyTorch.

DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub — it helps!! Frameworks & Librari

Sinhan Kang 7 Mar 22, 2022
Code for the paper "Relation of the Relations: A New Formalization of the Relation Extraction Problem"

This repo contains the code for the EMNLP 2020 paper "Relation of the Relations: A New Paradigm of the Relation Extraction Problem" (Jin et al., 2020)

YYY 27 Oct 26, 2022
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces

This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces a

9 Nov 21, 2022
Sound Event Detection with FilterAugment

Sound Event Detection with FilterAugment Official implementation of Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Chal

43 Aug 28, 2022
FairFuzz: AFL extension targeting rare branches

FairFuzz An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested str

Caroline Lemieux 222 Nov 16, 2022
URIE: Universal Image Enhancementfor Visual Recognition in the Wild

URIE: Universal Image Enhancementfor Visual Recognition in the Wild This is the implementation of the paper "URIE: Universal Image Enhancement for Vis

Taeyoung Son 43 Sep 12, 2022
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

143 Jan 02, 2023
Facial Expression Detection In The Realtime

The human's facial expressions is very important to detect thier emotions and sentiment. It can be very efficient to use to make our computers make interviews. Furthermore, we have robots now can det

Adel El-Nabarawy 4 Mar 01, 2022
Finetune alexnet with tensorflow - Code for finetuning AlexNet in TensorFlow >= 1.2rc0

Finetune AlexNet with Tensorflow Update 15.06.2016 I revised the entire code base to work with the new input pipeline coming with TensorFlow = versio

Frederik Kratzert 766 Jan 04, 2023
On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition

On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition With the spirit of reproducible research, this repository contains codes requ

0 Feb 24, 2022
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

536 Dec 20, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

5 Dec 10, 2022
Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral)

Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral) Tianyu Wang*, Xiaowei Hu*, Chi-Wing Fu, and Pheng-Ann Hen

Steve Wong 51 Oct 20, 2022