DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models

Overview

DSEE

Codes for [Preprint] DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models

Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Chen, Zhangyang Wang, Ahmed Hassan Awadallahp

License: MIT

Overview

TBD

Requirements

We use conda to create virtual environments.

conda create -f environment.yml
conda activate dsee

Command

Unstructured DSEE

Step 0.

cd non-GPT-2
pip install -e .
cd ..

Step 1. Pre-training

Take SST-2 as example:

OUTPUT_DIR='./sst2_rank16_s1_64'
num_gpus=4
python -m torch.distributed.launch \
    --nproc_per_node=$num_gpus \
    --master_port=12345 non-GPT-2/examples/pytorch/text-classification/run_glue.py \
    --save_total_limit 10 \
    --model_name_or_path bert-base-uncased \ 
    --task_name sst2 \
    --output_dir ${OUTPUT_DIR} \
    --do_train \
    --do_eval \
    --num_train_epochs 3 \
    --save_steps 50 \
    --seed 1 \
    --per_device_train_batch_size 8 \
    --per_device_eval_batch_size 8 \
    --max_seq_length 128 \
    --overwrite_output_dir \
    --logging_steps 50 \
    --load_best_model_at_end True \
    --metric_for_best_model eval_accuracy \
    --apply_lora \
    --lora_r 16 \
    --apply_sparse \
    --num_sparse 64  \
    --learning_rate 2e-4 \
    --evaluation_strategy steps 

Step 2. Pruning & Fine-tuning

OUTPUT_DIR='./sst2_rank16_s1_64_prune_0.5'
num_gpus=4
python -m torch.distributed.launch \
    --nproc_per_node=$num_gpus \
    --master_port=12335 \
    non-GPT-2/examples/pytorch/text-classification/run_glue_prune_tune.py \
    --save_total_limit 10 \
    --model_name_or_path sst2_rank16_s1_64 \
    --task_name sst2 \
    --output_dir ${OUTPUT_DIR} \
    --do_train \
    --do_eval \
    --num_train_epochs 3 \
    --save_steps 50 \
    --seed 1 \
    --per_device_train_batch_size 8 \
    --per_device_eval_batch_size 8 \
    --max_seq_length 128 \
    --overwrite_output_dir \
    --logging_steps 50 \
    --load_best_model_at_end True \
    --metric_for_best_model eval_accuracy \
    --apply_lora \
    --lora_r 16 \
    --apply_sparse \
    --num_sparse 64 \
    --learning_rate 2e-4 \
    --pruning_ratio 0.5 \
    --evaluation_strategy steps

TODO

  • Codes for Unstructured DSEE on GPT-2
  • Codes for Structured DSEE

Acknowledgement

  1. The Huggingface's Transformers (https://github.com/huggingface/transformers)
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
Sequential GCN for Active Learning

Sequential GCN for Active Learning Please cite if using the code: Link to paper. Requirements: python 3.6+ torch 1.0+ pip libraries: tqdm, sklearn, sc

45 Dec 26, 2022
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

DGC-Net: Dense Geometric Correspondence Network This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network" TL;DR A

191 Dec 16, 2022
以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的斗地主ai

ddz-ai 介绍 斗地主是一种扑克游戏。游戏最少由3个玩家进行,用一副54张牌(连鬼牌),其中一方为地主,其余两家为另一方,双方对战,先出完牌的一方获胜。 ddz-ai以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的系统,使其经过大量训练后,能在实际游戏中获

freefuiiismyname 88 May 15, 2022
Implementation of "Selection via Proxy: Efficient Data Selection for Deep Learning" from ICLR 2020.

Selection via Proxy: Efficient Data Selection for Deep Learning This repository contains a refactored implementation of "Selection via Proxy: Efficien

Stanford Future Data Systems 70 Nov 16, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022
Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

OpenAI 2.9k Jan 04, 2023
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022
Transferable Unrestricted Attacks, which won 1st place in CVPR’21 Security AI Challenger: Unrestricted Adversarial Attacks on ImageNet.

Transferable Unrestricted Adversarial Examples This is the PyTorch implementation of the Arxiv paper: Towards Transferable Unrestricted Adversarial Ex

equation 16 Dec 29, 2022
QuanTaichi evaluation suite

QuanTaichi: A Compiler for Quantized Simulations (SIGGRAPH 2021) Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang Dai, W

Taichi Developers 120 Jan 04, 2023
Irrigation controller for Home Assistant

Irrigation Unlimited This integration is for irrigation systems large and small. It can offer some complex arrangements without large and messy script

Robert Cook 176 Jan 02, 2023
Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Tutoriais Públicos Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado finan

Trading com Dados 68 Oct 15, 2022
Image-popularity-score - A novel deep regression method for image scoring.

Image-popularity-score - A novel deep regression method for image scoring.

Shoaib ahmed 1 Dec 26, 2021
Automates Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning :rocket:

MLJAR Automated Machine Learning Documentation: https://supervised.mljar.com/ Source Code: https://github.com/mljar/mljar-supervised Table of Contents

MLJAR 2.4k Dec 31, 2022
Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch.

SE3 Transformer - Pytorch Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch. May be needed for replicating Alphafold2 resu

Phil Wang 207 Dec 23, 2022
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022