A universal memory dumper using Frida

Related tags

Deep Learningfridump
Overview

Fridump

Fridump (v0.1) is an open source memory dumping tool, primarily aimed to penetration testers and developers. Fridump is using the Frida framework to dump accessible memory addresses from any platform supported. It can be used from a Windows, Linux or Mac OS X system to dump the memory of an iOS, Android or Windows application.

Usage

How to:

  fridump [-h] [-o dir] [-U] [-v] [-r] [-s] [--max-size bytes] process

The following are the main flags that can be used with fridump:

  positional arguments:
  process            the process that you will be injecting to

  optional arguments:
  -h, --help         show this help message and exit
  -o dir, --out dir  provide full output directory path. (def: 'dump')
  -U, --usb          device connected over usb
  -v, --verbose      verbose
  -r, --read-only    dump read-only parts of memory. More data, more errors
  -s, --strings      run strings on all dump files. Saved in output dir.
  --max-size bytes   maximum size of dump file in bytes (def: 20971520)

To find the name of a local process, you can use:

  frida-ps

For a process that is running on a USB connected device, you can use:

  frida-ps -U

Examples:

  fridump -U Safari   -   Dump the memory of an iOS device associated with the Safari app
  fridump -U -s com.example.WebApp   -  Dump the memory of an Android device and run strings on all dump files
  fridump -r -o [full_path]  -  Dump the memory of a local application and save it to the specified directory

More examples can be found here

Installation

To install Fridump you just need to clone it from git and run it:

  git clone https://github.com/Nightbringer21/fridump.git
        
  python fridump.py -h

Pre-requisites

To use fridump you need to have frida installed on your python environment and frida-server on the device you are trying to dump the memory from. The easiest way to install frida on your python is using pip:

pip install frida

More information on how to install Frida can be found here

For iOS, installation instructions can be found here.

For Android, installation instructions can be found here.

Note: On Android devices, make sure that the frida-server binary is running as root!

Disclaimer

  • This is version 0.1 of the software, so I expect some bugs to be present
  • I am not a developer, so my coding skills might not be the best

This tool has been tested on a Windows 7 and a Mac OS X laptop, dumping the memory of:

  • an iPad Air 2 running iOS 8.2
  • a Galaxy Tab running Cyanogenmod 4.4.4
  • a Windows 7 laptop.

Therefore, if this tool is not working for you, I apologise and I will try to fix it.

Any suggestions and comments are welcome!

Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Main repo for ECCV 2020 paper MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images. visual.cs.brown.edu/matryodshka

Brown University Visual Computing Group 75 Dec 13, 2022
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).

GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv

Big Data and Multi-modal Computing Group, CRIPAC 186 Dec 27, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Daft-Exprt - PyTorch Implementation PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis The

Keon Lee 47 Dec 18, 2022
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
PyTorch source code for Distilling Knowledge by Mimicking Features

LSHFM.detection This is the PyTorch source code for Distilling Knowledge by Mimicking Features. And this project contains code for object detection wi

Guo-Hua Wang 4 Dec 17, 2022
Semi-supervised Transfer Learning for Image Rain Removal. In CVPR 2019.

Semi-supervised Transfer Learning for Image Rain Removal This package contains the Python implementation of "Semi-supervised Transfer Learning for Ima

Wei Wei 59 Dec 26, 2022
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

100 Sep 28, 2022
UFPR-ADMR-v2 Dataset

UFPR-ADMR-v2 Dataset The UFPR-ADMRv2 dataset contains 5,000 dial meter images obtained on-site by employees of the Energy Company of Paraná (Copel), w

Gabriel Salomon 8 Sep 29, 2022
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
Animal Sound Classification (Cats Vrs Dogs Audio Sentiment Classification)

this is a simple artificial neural network model using deep learning and torch-audio to classify cats and dog sounds.

crispengari 3 Dec 05, 2022
[CVPR 2022] Thin-Plate Spline Motion Model for Image Animation.

[CVPR2022] Thin-Plate Spline Motion Model for Image Animation Source code of the CVPR'2022 paper "Thin-Plate Spline Motion Model for Image Animation"

yoyo-nb 1.4k Dec 30, 2022
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 07, 2022
Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies.

Crypto_Bot Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies. Steps to get started using the bot: Sign up

21 Oct 03, 2022
A Light CNN for Deep Face Representation with Noisy Labels

A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=

Alfred Xiang Wu 715 Nov 05, 2022
Easily Process a Batch of Cox Models

ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬

Shixiang Wang 15 May 23, 2022
Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

AutomaticUSnavigation Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US

Cesare Magnetti 6 Dec 05, 2022
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021