Implementation of DropLoss for Long-Tail Instance Segmentation in Pytorch

Overview

[AAAI 2021]DropLoss for Long-Tail Instance Segmentation

[AAAI 2021] DropLoss for Long-Tail Instance Segmentation
Ting-I Hsieh*, Esther Robb*, Hwann-Tzong Chen, Jia-Bin Huang.
Association for the Advancement of Artificial Intelligence (AAAI), 2021

Image Figure: Measuring the performance tradeoff. Comparison between rare, common, and frequent categories AP for baselines and our method. We visualize the tradeoff for ‘common vs. frequent’ and ‘rare vs. frequent’as a Pareto frontier, where the top-right position indicates an ideal tradeoff between objectives. DropLoss achieves an improved tradeoff between object categories, resulting in higher overall AP.

This project is a pytorch implementation of DropLoss for Long-Tail Instance Segmentation. DropLoss improves long-tail instance segmentation by adaptively removing discouraging gradients to infrequent classes. A majority of the code is modified from facebookresearch/detectron2 and tztztztztz/eql.detectron2.

Progress

  • Training code.
  • Evaluation code.
  • LVIS v1.0 datasets.
  • Provide checkpoint model.

Installation

Requirements

  • Linux or macOS with Python = 3.7
  • PyTorch = 1.4 and torchvision that matches the PyTorch installation. Install them together at pytorch.org to make sure of this
  • OpenCV (optional but needed for demos and visualization)

Build Detectron2 from Source

gcc & g++ ≥ 5 are required. ninja is recommended for faster build.

After installing them, run:

python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
# (add --user if you don't have permission)

# Or, to install it from a local clone:
git clone https://github.com/facebookresearch/detectron2.git
python -m pip install -e detectron2


# Or if you are on macOS
CC=clang CXX=clang++ ARCHFLAGS="-arch x86_64" python -m pip install ......

Remove the latest fvcore package and install an older version:

pip uninstall fvcore
pip install fvcore==0.1.1.post200513

LVIS Dataset

Following the instructions of README.md to set up the LVIS dataset.

Training

To train a model with 8 GPUs run:

cd /path/to/detectron2/projects/DropLoss
python train_net.py --config-file configs/droploss_mask_rcnn_R_50_FPN_1x.yaml --num-gpus 8

Evaluation

Model evaluation can be done similarly:

cd /path/to/detectron2/projects/DropLoss
python train_net.py --config-file configs/droploss_mask_rcnn_R_50_FPN_1x.yaml --eval-only MODEL.WEIGHTS /path/to/model_checkpoint

Citing DropLoss

If you use DropLoss, please use the following BibTeX entry.

@inproceedings{DBLP:conf/aaai/Ting21,
  author 	= {Hsieh, Ting-I and Esther Robb and Chen, Hwann-Tzong and Huang, Jia-Bin},
  title     = {DropLoss for Long-Tail Instance Segmentation},
  booktitle = {Proceedings of the Workshop on Artificial Intelligence Safety 2021
               (SafeAI 2021) co-located with the Thirty-Fifth {AAAI} Conference on
               Artificial Intelligence {(AAAI} 2021), Virtual, February 8, 2021},
  year      = {2021}
  }
Cross-view Transformers for real-time Map-view Semantic Segmentation (CVPR 2022 Oral)

Cross View Transformers This repository contains the source code and data for our paper: Cross-view Transformers for real-time Map-view Semantic Segme

Brady Zhou 363 Dec 25, 2022
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight

SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia

Fudan Zhang Vision Group 272 Dec 25, 2022
Official PyTorch Implementation of SSMix (Findings of ACL 2021)

SSMix: Saliency-based Span Mixup for Text Classification (Findings of ACL 2021) Official PyTorch Implementation of SSMix | Paper Abstract Data augment

Clova AI Research 52 Dec 27, 2022
LBK 26 Dec 28, 2022
Low-dose Digital Mammography with Deep Learning

Impact of loss functions on the performance of a deep neural network designed to restore low-dose digital mammography ====== This repository contains

WANG-AXIS 6 Dec 13, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
Code for the Paper "Diffusion Models for Handwriting Generation"

Code for the Paper "Diffusion Models for Handwriting Generation"

62 Dec 21, 2022
Repository for training material for the 2022 SDSC HPC/CI User Training Course

hpc-training-2022 Repository for training material for the 2022 SDSC HPC/CI Training Series HPC/CI Training Series home https://www.sdsc.edu/event_ite

sdsc-hpc-training-org 21 Jul 27, 2022
A synthetic texture-invariant dataset for object detection of UAVs

A synthetic dataset for object detection of UAVs This repository contains a synthetic datasets accompanying the paper Sim2Air - Synthetic aerial datas

LARICS Lab 10 Aug 13, 2022
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022
Solution to the Weather4cast 2021 challenge

This code was used for the entry by the team "antfugue" for the Weather4cast 2021 Challenge. Below, you can find the instructions for generating predi

Jussi Leinonen 13 Jan 03, 2023
Multi-query Video Retreival

Multi-query Video Retreival

Princeton Visual AI Lab 17 Nov 22, 2022
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
This is a repository of our model for weakly-supervised video dense anticipation.

Introduction This is a repository of our model for weakly-supervised video dense anticipation. More results on GTEA, Epic-Kitchens etc. will come soon

2 Apr 09, 2022
Plug and play transformer you can find network structure and official complete code by clicking List

Plug-and-play Module Plug and play transformer you can find network structure and official complete code by clicking List The following is to quickly

8 Mar 27, 2022
neural image generation

pixray Pixray is an image generation system. It combines previous ideas including: Perception Engines which uses image augmentation and iteratively op

dribnet 398 Dec 17, 2022