SatelliteSfM - A library for solving the satellite structure from motion problem

Overview

Satellite Structure from Motion

Maintained by Kai Zhang.

Overview

  • This is a library dedicated to solving the satellite structure from motion problem.
  • It's a wrapper of the VisSatSatelliteStereo repo for easier use.
  • The outputs are png images and OpenCV-compatible pinhole camreas readily deployable to multi-view stereo pipelines targetting ground-level images.

Installation

Assume you are on a Linux machine with at least one GPU, and have conda installed. Then to install this library, simply by:

. ./env.sh

Inputs

We assume the inputs to be a set of .tif images encoding the 3-channel uint8 RGB colors, and the metadata like RPC cameras. This data format is to align with the public satellite benchmark: TRACK 3: MULTI-VIEW SEMANTIC STEREO. Download one example data from this google drive; folder structure look like below:

- examples/inputs
    - images/
        - *.tif
        - *.tif
        - *.tif
        - ...
    - latlonalt_bbx.json

, where latlonalt_bbx.json specifies the bounding box for the site of interest in the global (latitude, longitude, altitude) coordinate system.

If you are not sure what is a reasonably good altitude range, you can put random numbers in the json file, but you have to enable the --use_srtm4 option below.

Run Structure from Motion

python satellite_sfm.py --input_folder examples/inputs --output_folder examples/outputs --run_sfm [--use_srtm4] [--enable_debug]

The --enable_debug option outputs some visualization helpful debugging the structure from motion quality.

Outputs

  • {output_folder}/images/ folder contains the png images
  • {output_folder}/cameras_adjusted/ folder contains the bundle-adjusted pinhole cameras; each camera is represented by a pair of 4x4 K, W2C matrices that are OpenCV-compatible.
  • {output_folder}/enu_bbx_adjusted.json contains the scene bounding box in the local ENU Euclidean coordinate system.
  • {output_folder}/enu_observer_latlonalt.json contains the observer coordinate for defining the local ENU coordinate; essentially, this observer coordinate is only necessary for coordinate conversion between local ENU and global latitude-longitude-altitude.

If you turn on the --enable_debug option, you might want to dig into the folder {output_folder}/debug_sfm for visuals, etc.

Citations

@inproceedings{VisSat-2019,
  title={Leveraging Vision Reconstruction Pipelines for Satellite Imagery},
  author={Zhang, Kai and Sun, Jin and Snavely, Noah},
  booktitle={IEEE International Conference on Computer Vision Workshops},
  year={2019}
}

Example results

input images

Input images

sparse point cloud ouput by SfM

Sparse point cloud

homograhpy-warp one view, then average with another by a plane sequence

Sweep plane high-res video

inspect epipolar geometry

python inspect_epipolar_geometry.py

inspect epipolar

get zero-skew instrincis marix

python skew_correct.py --input_folder ./examples/outputs ./examples/outputs_zeroskew

skew correct

More handy scripts are coming

Stay tuned :-)

Owner
Kai Zhang
PhD candidate at Cornell.
Kai Zhang
Parasite: a tool allowing you to compress and decompress files, to reduce their size

🦠 Parasite 🦠 Parasite is a tool written in Python3 allowing you to "compress" any file, reducing its size. ⭐ Features ⭐ + Fast + Good optimization,

Billy 30 Nov 25, 2022
Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN) This code implements the skeleton-based action segmentation MS-GCN model from Autom

Benjamin Filtjens 8 Nov 29, 2022
Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

PyTorch RL Minimal Implementations There are implementations of some reinforcement learning algorithms, whose characteristics are as follow: Less pack

Gemini Light 4 Dec 31, 2022
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

JDAI-CV 2.8k Jan 07, 2023
Classifying cat and dog images using Kaggle dataset

PyTorch Image Classification Classifies an image as containing either a dog or a cat (using Kaggle's public dataset), but could easily be extended to

Robert Coleman 74 Nov 22, 2022
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492

PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain

Anuvabh Dutt 25 Dec 22, 2021
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Code for MSc Quantitative Finance Dissertation

MSc Dissertation Code ReadMe Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks Curtis Nybo MSc Quantitative F

2 Dec 01, 2022
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022
A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

443 Jan 06, 2023
QueryFuzz implements a metamorphic testing approach to test Datalog engines.

Datalog is a popular query language with applications in several domains. Like any complex piece of software, Datalog engines may contain bugs. The mo

34 Sep 10, 2022
The official repository for BaMBNet

BaMBNet-Pytorch Paper

Junjun Jiang 18 Dec 04, 2022
A Traffic Sign Recognition Project which can help the driver recognise the signs via text as well as audio. Can be used at Night also.

Traffic-Sign-Recognition In this report, we propose a Convolutional Neural Network(CNN) for traffic sign classification that achieves outstanding perf

Mini Project 64 Nov 19, 2022
Database Reasoning Over Text project for ACL paper

Database Reasoning over Text This repository contains the code for the Database Reasoning Over Text paper, to appear at ACL2021. Work is performed in

Facebook Research 320 Dec 12, 2022
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022