Code for Motion Representations for Articulated Animation paper

Overview

Motion Representations for Articulated Animation

This repository contains the source code for the CVPR'2021 paper Motion Representations for Articulated Animation by Aliaksandr Siarohin, Oliver Woodford, Jian Ren, Menglei Chai and Sergey Tulyakov.

For more qualitiative examples visit our project page.

Example animation

Here is an example of several images produced by our method. In the first column the driving video is shown. For the remaining columns the top image is animated by using motions extracted from the driving.

Screenshot

Installation

We support python3. To install the dependencies run:

pip install -r requirements.txt

YAML configs

There are several configuration files one for each dataset in the config folder named as config/dataset_name.yaml. See config/dataset.yaml to get the description of each parameter.

See description of the parameters in the config/vox256.yaml. We adjust the the configuration to run on 1 V100 GPU, training on 256x256 dataset takes approximatly 2 days.

Pre-trained checkpoints

Checkpoints can be found in checkpoints folder. Checkpoints are large, therefore we use git lsf to store them. Either use git lfs pull or download checkpoints manually from github.

Animation Demo

To run a demo, download a checkpoint and run the following command:

python demo.py  --config config/dataset_name.yaml --driving_video path/to/driving --source_image path/to/source --checkpoint path/to/checkpoint

The result will be stored in result.mp4. To use Animation via Disentaglemet add --mode avd, for standard animation add --mode standard instead.

Colab Demo

We prepared a demo runnable in google-colab, see: demo.ipynb.

Training

To train a model run:

CUDA_VISIBLE_DEVICES=0 python run.py --config config/dataset_name.yaml --device_ids 0

The code will create a folder in the log directory (each run will create a time-stamped new folder). Checkpoints will be saved to this folder. To check the loss values during training see log.txt. You can also check training data reconstructions in the train-vis subfolder. Then to train Animation via disentaglement (AVD) use:

CUDA_VISIBLE_DEVICES=0 python run.py --checkpoint log/{folder}/cpk.pth --config config/dataset_name.yaml --device_ids 0 --mode train_avd

Where {folder} is the name of the folder created in the previous step. (Note: use backslash '' before space.) This will use the same folder where checkpoint was previously stored. It will create a new checkpoint containing all the previous models and the trained avd_network. You can monitor performance in log file and visualizations in train-vis folder.

Evaluation on video reconstruction

To evaluate the reconstruction performance run:

CUDA_VISIBLE_DEVICES=0 python run.py --config config/dataset_name.yaml --mode reconstruction --checkpoint log/{folder}/cpk.pth

Where {folder} is the name of the folder created in the previous step. (Note: use backslash '' before space.) The reconstruction subfolder will be created in the checkpoint folder. The generated video will be stored to this folder, also generated videos will be stored in png subfolder in loss-less '.png' format for evaluation. Instructions for computing metrics from the paper can be found here.

TED dataset

For obtaining TED dataset run the following commands:

git clone https://github.com/AliaksandrSiarohin/video-preprocessing
cd video-preprocessing
python load_videos.py --metadata ../data/ted384-metadata.csv --format .mp4 --out_folder ../data/TED384-v2 --workers 8 --image_shape 384,384

Training on your own dataset

  1. Resize all the videos to the same size, e.g 256x256, the videos can be in '.gif', '.mp4' or folder with images. We recommend the latter, for each video make a separate folder with all the frames in '.png' format. This format is loss-less, and it has better i/o performance.

  2. Create a folder data/dataset_name with 2 subfolders train and test, put training videos in the train and testing in the test.

  3. Create a config file config/dataset_name.yaml. See description of the parameters in the config/vox256.yaml. Specify the dataset root in dataset_params specify by setting root_dir: data/dataset_name. Adjust other parameters as desired, such as the number of epochs for example. Specify id_sampling: False if you do not want to use id_sampling.

Additional notes

Citation:

@inproceedings{siarohin2021motion,
        author={Siarohin, Aliaksandr and Woodford, Oliver and Ren, Jian and Chai, Menglei and Tulyakov, Sergey},
        title={Motion Representations for Articulated Animation},
        booktitle = {CVPR},
        year = {2021}
}
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi

Zilong Huang 1.3k Dec 27, 2022
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model

Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine

Peng 1 Dec 26, 2021
LibMTL: A PyTorch Library for Multi-Task Learning

LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP

765 Jan 06, 2023
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet

PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet

1.2k Jan 04, 2023
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 410 Jan 03, 2023
FFTNet vocoder implementation

Unofficial Implementation of FFTNet vocode paper. implement the model. implement tests. overfit on a single batch (sanity check). linearize weights fo

Eren Gölge 81 Dec 08, 2022
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

fernando 6.5k Jan 02, 2023
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca

91 Dec 14, 2022
This is a simple framework to make object detection dataset very quickly

FastAnnotation Table of contents General info Requirements Setup General info This is a simple framework to make object detection dataset very quickly

Serena Tetart 1 Jan 24, 2022
Photo2cartoon - 人像卡通化探索项目 (photo-to-cartoon translation project)

人像卡通化 (Photo to Cartoon) 中文版 | English Version 该项目为小视科技卡通肖像探索项目。您可使用微信扫描下方二维码或搜索“AI卡通秀”小程序体验卡通化效果。

Minivision_AI 3.5k Dec 30, 2022
LBBA-boosted WSOD

LBBA-boosted WSOD Summary Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN Sincerely thanks for your resources. Newer version of our code

Martin Dong 20 Sep 19, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
Binary classification for arrythmia detection with ECG datasets.

HEART DISEASE AI DATATHON 2021 [Eng] / [Kor] #English This is an AI diagnosis modeling contest that uses the heart disease echocardiography and electr

HY_Kim 3 Jul 14, 2022
(AAAI 2021) Progressive One-shot Human Parsing

End-to-end One-shot Human Parsing This is the official repository for our two papers: Progressive One-shot Human Parsing (AAAI 2021) End-to-end One-sh

54 Dec 30, 2022
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
Graph parsing approach to structured sentiment analysis.

Fine-grained Sentiment Analysis as Dependency Graph Parsing This repository contains the code and datasets described in following paper: Fine-grained

Jeremy Barnes 36 Dec 12, 2022
Image Segmentation using U-Net, U-Net with skip connections and M-Net architectures

Brain-Image-Segmentation Segmentation of brain tissues in MRI image has a number of applications in diagnosis, surgical planning, and treatment of bra

Angad Bajwa 8 Oct 27, 2022