R3Det based on mmdet 2.19.0

Overview

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object

License arXiv

Installation

# install mmdetection first if you haven't installed it yet. (Refer to mmdetection for details.)
pip install mmdet==2.19.0

# install r3det (Compiling rotated ops is a little time-consuming.)
pip install -r requirements.txt
pip install -v -e .
  • It is best to use opencv-python greater than 4.5.1 because its angle representation has been changed in 4.5.1. The following experiments are all run with 4.5.3.

Quick Start

Please change path in configs to your data path.

# train
CUDA_VISIBLE_DEVICES=0 PORT=29500 \
./tools/dist_train.sh configs/rretinanet/rretinanet_obb_r50_fpn_1x_dota_v3.py 1

# submission
CUDA_VISIBLE_DEVICES=0 PORT=29500 \
./tools/dist_test.sh configs/rretinanet/rretinanet_obb_r50_fpn_1x_dota_v3.py \
        work_dirs/rretinanet_obb_r50_fpn_1x_dota_v3/epoch_12.pth 1 --format-only\
        --eval-options submission_dir=work_dirs/rretinanet_obb_r50_fpn_1x_dota_v3/Task1_results

For DOTA dataset, please crop the original images into 1024×1024 patches with an overlap of 200 by run

python tools/split/img_split.py --base_json \
       tools/split/split_configs/split_configs/dota1_0/ss_trainval.json

python tools/split/img_split.py --base_json \
       tools/split/split_configs/dota1_0/ss_test.json

Please change path in ss_trainval.json, ss_test.json to your path. (Forked from BboxToolkit, which is faster then DOTA_Devkit.)

Angle Representations

Three angle representations are built-in, which can freely switch in the config.

  • v1 (from R3Det): [-PI/2, 0)
  • v2 (from S2ANet): [-Pi/4, 3PI/4)
  • v3 (from OBBDetection): [-PI/2, PI/2)

The differences of the three angle representations are reflected in poly2obb, obb2poly, obb2xyxy, obb2hbb, hbb2obb, etc. [More], And according to the above three papers, the coders of them are different.

  • DeltaXYWHAOBBoxCoder
    • v1:None
    • v2:Constrained angle + Projection of dx and dy + Normalized with PI
    • v3:Constrained angle and length&width + Projection of dx and dy
  • DeltaXYWHAHBBoxCoder
    • v1:None
    • v2:Constrained angle + Normalized with PI
    • v3:Constrained angle and length&width + Normalized with 2PI

We believe that different coders are the key reason for the different baselines in different papers. The good news is that all the above coders can be freely switched in R3Det. In addition, R3Det also provide 4 NMS ops and 3 IoU_Calculators for rotation detection as follows:

  • nms.type
    • v1:v1
    • v2:v2
    • v3:v3
    • mmcv: mmcv
  • iou_calculator
    • v1:RBboxOverlaps2D_v1
    • v2:RBboxOverlaps2D_v2
    • v3:RBboxOverlaps2D_v3

Performance

DOTA1.0 (Task1)
Model Backbone Lr schd MS RR Angle box AP Official Download
RRetinaNet HBB R50-FPN 1x - - v1 65.19 65.73 Baidu:0518/Google
RRetinaNet OBB R50-FPN 1x - - v3 68.20 69.40 Baidu:0518/Google
RRetinaNet OBB R50-FPN 1x - - v2 68.64 68.40 Baidu:0518/Google
R3Det R50-FPN 1x - - v1 70.41 70.66 Baidu:0518/Google
R3Det* R50-FPN 1x - - v1 70.86 - Baidu:0518/Google
  • MS means multiple scale image split.
  • RR means random rotation.

Citation

@inproceedings{yang2021r3det,
    title={R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object},
    author={Yang, Xue and Yan, Junchi and Feng, Ziming and He, Tao},
    booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
    volume={35},
    number={4},
    pages={3163--3171},
    year={2021}
}

Owner
SJTU-Thinklab-Det
SJTU-Thinklab-Det
Unified tracking framework with a single appearance model

Paper: Do different tracking tasks require different appearance model? [ArXiv] (comming soon) [Project Page] (comming soon) UniTrack is a simple and U

ZhongdaoWang 300 Dec 24, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ibai Gorordo 12 Aug 27, 2022
Contextual Attention Network: Transformer Meets U-Net

Contextual Attention Network: Transformer Meets U-Net Contexual attention network for medical image segmentation with state of the art results on skin

Reza Azad 67 Nov 28, 2022
OpenLT: An open-source project for long-tail classification

OpenLT: An open-source project for long-tail classification Supported Methods for Long-tailed Recognition: Cross-Entropy Loss Focal Loss (ICCV'17) Cla

Ming Li 37 Sep 15, 2022
NEO: Non Equilibrium Sampling on the orbit of a deterministic transform

NEO: Non Equilibrium Sampling on the orbit of a deterministic transform Description of the code This repo describes the NEO estimator described in the

0 Dec 01, 2021
Model serving at scale

Run inference at scale Cortex is an open source platform for large-scale machine learning inference workloads. Workloads Realtime APIs - respond to pr

Cortex Labs 7.9k Jan 06, 2023
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

4 Aug 02, 2022
Dynamic Head: Unifying Object Detection Heads with Attentions

Dynamic Head: Unifying Object Detection Heads with Attentions dyhead_video.mp4 This is the official implementation of CVPR 2021 paper "Dynamic Head: U

Microsoft 550 Dec 21, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
Measuring and Improving Consistency in Pretrained Language Models

ParaRel 🤘 This repository contains the code and data for the paper: Measuring and Improving Consistency in Pretrained Language Models as well as the

Yanai Elazar 26 Dec 02, 2022
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M

3 Feb 25, 2022
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

5 Jan 04, 2023
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
An Inverse Kinematics library aiming performance and modularity

IKPy Demo Live demos of what IKPy can do (click on the image below to see the video): Also, a presentation of IKPy: Presentation. Features With IKPy,

Pierre Manceron 481 Jan 02, 2023
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne

John 8 Oct 07, 2022
Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

InstanceRefer InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

63 Dec 07, 2022
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022