Measuring and Improving Consistency in Pretrained Language Models

Related tags

Deep Learningpararel
Overview

ParaRel 🤘

This repository contains the code and data for the paper:

Measuring and Improving Consistency in Pretrained Language Models

as well as the resource: ParaRel 🤘

Since this work required running a lot of experiments, it is structured by scripts that automatically runs many sub-experiments, on parallel servers, and tracking using an experiment tracking website: wandb, which are then aggregated using a jupyter notebook. To run all the experiments I used task spooler, a queue-based software that allows to run multiple commands in parallel (and store the rest in a queue)

It is also possible to run individual experiments, for which one can look for in the corresponding script.

For any question, query regarding the code, or paper, please reach out at [email protected]

ParaRel 🤘

If you're only interested in the data, you can find it under data. Each file contains the paraphrases patterns for a specific relation, in a json file.

Create environment

conda create -n pararel python=3.7 anaconda
conda activate pararel

pip install -r requirements.txt

add project to path:

export PYTHONPATH=${PYTHONPATH}:/path-to-project

Setup

In case you just want to start with the filtered data we used (filtering objects that consist more than a single word piece in the LMs we considered), you can find them here. Otherwise:

First, begin by downloading the trex dataset from here, alternatively, check out the LAMA github repo. Download it to the following folder so that the following folder would exist: data/trex/data/TREx along with the relevant files

Next, in case you want to rerun automatically some/all of the experiments, you will need to update the paths in the runs scripts with your folder path and virtual environment.

Run Scripts

Filter data from trex, to include only triplets that appear in the inspected LMs in this work: bert-base-cased, roberta-base, albert-base-v2 (as well as the larger versions, that contain the same vocabulary)

python runs/pararel/filter.py

A single run looks like the following:

python lm_meaning/lm_entail/filter_data.py \
       --in_data data/trex/data/TREx/P106.jsonl \
       --model_names bert-base-cased,bert-large-cased,bert-large-cased-whole-word-masking,roberta-base,roberta-large,albert-base-v2,albert-xxlarge-v2 \
       --out_file data/trex_lms_vocab/P106.jsonl

Evaluate consistency:

python runs/eval/run_lm_consistent.py

A single run looks like the following:

python pararel/consistency/encode_consistency_probe.py \
       --data_file data/trex_lms_vocab/P106.jsonl \
       --lm bert-base-cased \
       --graph data/pattern_data/graphs/P106.graph \
       --gpu 0 \
       --wandb \
       --use_targets

Encode the patterns along with the subjects, to save the representations:

python runs/pararel/encode_text.py

A single run looks like the following:

python lm_meaning/encode/encode_text.py \
       --patterns_file data/pattern_data/graphs_json/P106.jsonl \
       --data_file data/trex_lms_vocab/P106.jsonl \
       --lm bert-base-cased \
       --pred_file data/output/representations/P106_bert-base-cased.npy \
       --wandb

Improving Consistency with ParaRel

The code and README are available here

FAQ

Q: Why do you report 31 N-1 relations, whereas in the LAMA paper there are only 25?

A: Explanation

Citation:

If you find this work relevant to yours, please cite us:

@article{Elazar2021MeasuringAI,
  title={Measuring and Improving Consistency in Pretrained Language Models},
  author={Yanai Elazar and Nora Kassner and Shauli Ravfogel and Abhilasha Ravichander and Ed Hovy and Hinrich Schutze and Yoav Goldberg},
  journal={ArXiv},
  year={2021},
  volume={abs/2102.01017}
}
Owner
Yanai Elazar
PhD student at Bar-Ilan University, Israel
Yanai Elazar
Deep Compression for Dense Point Cloud Maps.

DEPOCO This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps. How to get started (using Docker)

Photogrammetry & Robotics Bonn 67 Dec 06, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting

[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting [Paper] [Project Website] [Google Colab] We propose a method for converting a

Virginia Tech Vision and Learning Lab 6.2k Jan 01, 2023
SOTA model in CIFAR10

A PyTorch Implementation of CIFAR Tricks 调研了CIFAR10数据集上各种trick,数据增强,正则化方法,并进行了实现。目前项目告一段落,如果有更好的想法,或者希望一起维护这个项目可以提issue或者在我的主页找到我的联系方式。 0. Requirement

PJDong 58 Dec 21, 2022
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation This repository contains the source code for

Yun-Chun Chen 60 Nov 25, 2022
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

3 Mar 09, 2022
DexterRedTool - Dexter's Red Team Tool that creates cronjob/task scheduler to consistently creates users

DexterRedTool Author: Dexter Delandro CSEC 473 - Spring 2022 This tool persisten

2 Feb 16, 2022
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.

Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri

PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany 0 Nov 22, 2021
A embed able annotation tool for end to end cross document co-reference

CoRefi CoRefi is an emebedable web component and stand alone suite for exaughstive Within Document and Cross Document Coreference Anntoation. For a de

PythicCoder 39 Dec 12, 2022
A powerful framework for decentralized federated learning with user-defined communication topology

Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated

Johns Hopkins Applied Physics Laboratory 7 Sep 26, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
Unified file system operation experience for different backend

megfile - Megvii FILE library Docs: http://megvii-research.github.io/megfile megfile provides a silky operation experience with different backends (cu

MEGVII Research 76 Dec 14, 2022
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Syed Waqas Zamir 906 Dec 30, 2022