(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Overview

Dressing in Order (DiOr)

👚 [Paper] 👖 [Webpage] 👗 [Running this code]

The official implementation of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing". by Aiyu Cui, Daniel McKee and Svetlana Lazebnik. (ICCV 2021)

🔔 Updates

Supported Try-on Applications

Supported Editing Applications

More results

Play with demo.ipynb!


Get Started

Please follow the installation instruction in GFLA to install the environment.

Then run

pip install -r requirements.txt

If one wants to run inference only: You can use later version of PyTorch and you don't need to worry about how to install GFLA's cuda functions. Please specify --frozen_flownet.

Dataset

We run experiments on Deepfashion Dataset. To set up the dataset:

  1. Download and unzip img_highres.zip from the deepfashion inshop dataset at $DATA_ROOT
  2. Download the train/val split and pre-processed keypoints annotations from GFLA source or PATN source, and put the .csv and .lst files at $DATA_ROOT.
    • If one wants to extract the keypoints from scratch, please run OpenPose as the pose estimator. Please follow the instruction from PATN for how to generate the keypoints in desired format.
  3. Run python tools/generate_fashion_dataset.py to split the data. (Please specify the $DATA_ROOT accordingly.)
  4. Get human parsing. You can obtain the parsing by either:
    • Run off-the-shelf human parser SCHP (with LIP labels) on $DATA_ROOT/train and $DATA_ROOT/test. Name the output parses folder as $DATA_ROOT/trainM_lip and $DATA_ROOT/testM_lip respectively.
    • Download the preprocessed parsing from here and put it under $DATA_ROOT.
  5. Download standard_test_anns.txt for fast visualization.

After the processing, you should have the dataset folder formatted like:

+ $DATA_ROOT
|   + train (all training images)
|   |   - xxx.jpg
|   |     ...
|   + trainM_lip (human parse of all training images)
|   |   - xxx.png
|   |     ...
|   + test (all test images)
|   |   - xxx.jpg
|   |     ...
|   + testM_lip (human parse of all test images)
|   |   - xxx.png
|   |     ...
|   - fashion-pairs-train.csv (paired poses for training)
|   - fashion-pairs-test.csv (paired poses for test)
|   - fashion-annotation-train.csv (keypoints for training images)
|   - fashion-annotation-test.csv  (keypoints for test images)
|   - train.lst
|   - test.lst
|   - standard_test_anns.txt

Run Demo

Please download the pretrained weights from here and unzip at checkpoints/.

After downloading the pretrained model and setting the data, you can try out our applications in notebook demo.ipynb.

(The checkpoints above are reproduced, so there could be slightly difference in quantitative evaluation from the reported results. To get the original results, please check our released generated images here.)

(DIORv1_64 was trained with a minor difference in code, but it may give better visual results in some applications. If one wants to try it, specify --netG diorv1.)


Training

Warmup the Global Flow Field Estimator

Note, if you don't want to warmup the Global Flow Field Estimator, you can extract its weights from GFLA by downloading the pretrained weights GFLA from here.

Otherwise, run

sh scripts/run_pose.sh

Training

After warming up the flownet, train the pipeline by

sh scripts/run_train.sh

Run tensorboard --logdir checkpoints/$EXP_NAME/train to check tensorboard. Resetting discriminators may help training when it stucks at local minimals.

Evaluations

To download our generated images (256x176 reported in paper): here.

SSIM, FID and LPIPS

To run evaluation (SSIM, FID and LPIPS) on pose transfer task:

sh scripts/run_eval.sh

Cite us!

If you find this work is helpful, please consider to star 🌟 this repo and cite us as

@article{cui2021dressing,
  title={Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing},
  author={Cui, Aiyu and McKee, Daniel and Lazebnik, Svetlana},
  journal={arXiv preprint arXiv:2104.07021},
  year={2021}
}

Acknowledgements

This repository is built up on GFLA, pytorch-CycleGAN-and-pix2pix, PATN and MUNIT. Please be aware of their licenses when using the code.

Thanks a lot for the great work to the pioneer researchers!

A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets

HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit

1 Jan 10, 2022
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
NR-GAN: Noise Robust Generative Adversarial Networks

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

Takuhiro Kaneko 59 Dec 11, 2022
Retina blood vessel segmentation with a convolutional neural network

Retina blood vessel segmentation with a convolution neural network (U-net) This repository contains the implementation of a convolutional neural netwo

Orobix 1.2k Jan 06, 2023
JAX + dataclasses

jax_dataclasses jax_dataclasses provides a wrapper around dataclasses.dataclass for use in JAX, which enables automatic support for: Pytree registrati

Brent Yi 35 Dec 21, 2022
A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

this is a simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

crispengari 5 Dec 09, 2021
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️

GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️ This repo contains a PyTorch implementation of the original GAT paper ( 🔗 Veličković et

Aleksa Gordić 1.9k Jan 09, 2023
Real time sign language recognition

The proposed work aims at converting american sign language gestures into English that can be understood by everyone in real time.

Mohit Kaushik 6 Jun 13, 2022
NeRD: Neural Reflectance Decomposition from Image Collections

NeRD: Neural Reflectance Decomposition from Image Collections Project Page | Video | Paper | Dataset Implementation for NeRD. A novel method which dec

Computergraphics (University of Tübingen) 195 Dec 29, 2022
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021
PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a

536 Jan 05, 2023
Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

Behind the Curtain: Learning Occluded Shapes for 3D Object Detection Acknowledgement We implement our model, BtcDet, based on [OpenPcdet 0.3.0]. Insta

Qiangeng Xu 163 Dec 19, 2022
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
3rd Place Solution for ICCV 2021 Workshop SSLAD Track 3A - Continual Learning Classification Challenge

Online Continual Learning via Multiple Deep Metric Learning and Uncertainty-guided Episodic Memory Replay 3rd Place Solution for ICCV 2021 Workshop SS

Rifki Kurniawan 6 Nov 10, 2022
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

The official code for the NeurIPS 2021 paper Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

13 Dec 22, 2022
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

VITA 59 Dec 28, 2022