GrailQA: Strongly Generalizable Question Answering

Related tags

Deep LearningGrailQA
Overview

GrailQA: Strongly Generalizable Question Answering

Contributions Welcome License language-python3 made-with-Pytorch paper image

GrailQA is a new large-scale, high-quality KBQA dataset with 64,331 questions annotated with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). It can be used to test three levels of generalization in KBQA: i.i.d., compositional, and zero-shot.

This is the accompanying code for the paper "Beyond I.I.D.: Three Levels of Generalization for Question Answering on Knowledge Bases" published at TheWebConf (previously WWW) 2021. For dataset and leaderboard, please refer to the homepage of GrailQA. In this repository, we provide the code for the baseline models for reproducibility and demonstrate how to work with this dataset.

Package Description

This repository is structured as follows:

GrailQA/
├─ model_configs/
    ├─ train/: Configuration files for training
    ├─ test/: Configuration files for inference
├─ data/: Data files for training, validation, and test
├─ ontology/: Processed Freebase ontology files
    ├─ domain_dict: Mapping from a domain in Freebase Commons to all schema items in it
    ├─ domain_info: Mapping from a schema item to a Freebase Commons domain it belongs to
    ├─ fb_roles: Domain and range information for a relation (Note that here domain means a different thing from domains in Freebase Commons)
    ├─ fb_types: Class hierarchy in Freebase
    ├─ reverse_properties: Reverse properties in Freebase 
├─ bert_configs/: BERT configuration used by pytorch_transformer, which you are very unlikely to modify
├─ entity_linking_results/: Entity linking results 
├─ entity_linker/: source code for the entity linker, which is a separate module from our main model
├─ vocabulary/: Preprocessed vocabulary, which is only required by our GloVe-based models
├─ cache/: Cached results for SPARQL queries, which are used to accelerate the experiments by caching many SPARQL query results offline
├─ saved_models/: Trained models
├─ utils/:
    ├─ bert_interface.py: Interface to BERT 
    ├─ logic_form_util: Tools related to logical forms, including the exact match checker for two logical forms
    ├─ search_over_graphs.py: Generate candidate logical forms for our Ranking models
    ├─ sparql_executor: Sparql-related tools
├─ bert_constrained_seq2seq.py: BERT-based model for both Ranking and Transduction
├─ bert_seq2seq_reader.py: Data reader for BERT-based models
├─ constrained_seq2seq.py: GloVe-based model for both Ranking and Transduction
├─ constrained_seq2seq_reader.py: Data reader for GloVe-based models
├─ run.py: Main function

Setup

Follow these steps if you want to reproduce the results in the paper.

  1. Follow Freebase Setup to set up a Virtuoso triplestore service. After starting your virtuoso service, replace the url in utils/sparql_executer.py with your own.
  2. Download cache files from https://1drv.ms/u/s!AuJiG47gLqTznjfRRxdW5YDYFt3o?e=GawH1f and put all the files under cache/.
  3. Download trained models from https://1drv.ms/u/s!AuJiG47gLqTznxbenfeRBrTuTbWz?e=g5Nazi and put all the files under saved_models/.
  4. Download GrailQA dataset and put it under data/.
  5. Install all required libraries:
$ pip install -r requirements.txt

(Note: we have included our adapted version of AllenNLP in this repo so there's no need to separately install that.)

Reproduce Our Results

The predictions of our baseline models can be found via CodaLab. Run predict command to reproduce the predictions. There are several arguments to configure to run predict:

python run.py predict
  [path_to_saved_model]
  [path_to_test_data]
  -c [path_to_the_config_file]
  --output-file [results_file_name] 
  --cuda-device [cuda_device_to_use]

Specifically, to run Ranking+BERT:

$ PYTHONHASHSEED=23 python run.py predict saved_models/BERT/model.tar.gz data/grailqa_v1.0_test_public.json --include-package bert_constrained_seq2seq --include-package bert_seq2seq_reader --include-package utils.bert_interface --use-dataset-reader --predictor seq2seq -c model_configs/test/bert_ranking.jsonnet --output-file bert_ranking.txt --cuda-device 0

To run Ranking+GloVe:

$ PYTHONHASHSEED=23 python run.py predict predict saved_models/GloVe/model.tar.gz data/grailqa_v1.0_test_public.json --include-package constrained_seq2seq --include-package constrained_seq2seq_reader --predictor seq2seq --use-dataset-reader -c model_configs/test/glove_ranking.jsonnet --output-file glove_ranking.txt --cuda-device 0

To run Transduction+BERT:

$ PYTHONHASHSEED=23 python run.py predict saved_models/BERT/model.tar.gz data/grailqa_v1.0_test_public.json --include-package bert_constrained_seq2seq --include-package bert_seq2seq_reader --include-package utils.bert_interface --use-dataset-reader --predictor seq2seq -c model_configs/test/bert_vp.jsonnet --output-file bert_vp.txt --cuda-device 0

To run Transduction+GloVe:

$ PYTHONHASHSEED=23 python run.py predict predict saved_models/GloVe/model.tar.gz data/grailqa_v1.0_test_public.json --include-package constrained_seq2seq --include-package constrained_seq2seq_reader --predictor seq2seq --use-dataset-reader -c model_configs/test/glove_vp.jsonnet --output-file glove_vp.txt --cuda-device 0

Entity Linking

We also release our code for entity linking to facilitate future research. Similar to most other KBQA methods, entity linking is a separate module from our main model. If you just want to run our main models, you do not need to re-run our entity linking module because our models directly use the entity linking results under entity_linking/.

Our entity linker is based on BERT-NER and the popularity-based entity disambiguation in aqqu. Specifically, we use the NER model to identify a set of entity mentions, and then use the identified mentions to retieve Freebase entities from the entity memory constructed from Freebase entity mentions information (i.e., mentions in FACC1 and all alias in Freebase if not included in FACC11).

To run our entity linker, first download the mentions data from https://1drv.ms/u/s!AuJiG47gLqTznjl7VbnOESK6qPW2?e=HDy2Ye and put all data under entity_linker/data/. Second, download our trained NER model from https://1drv.ms/u/s!AuJiG47gLqTznjge7wLqAZiSMIcU?e=5RpKaC, which is trained using the training data of GrailQA, and put it under entity_linker/BERT_NER/. Then you should be all set! We provide a use example in entity_linker/bert_entity_linker.py. Follow the use example to identiy entities using our entity linker for your own data.

[1]: FACC1 containes the mentions information for around 1/8 of Freebase entities, including different mentions for those entities and the frequency for each mention. For entities not included in FACC1, we use the following properties to retrieve the mentions for each entity: , , . Note that we don't have frequency information for those entity mentions, so we simply treat the number of occurences as 1 for all of them in our implementation.

Train New Models

You can also use our code to train new models.

Training Configuration

Following AllenNLP, our train command also takes a configuration file as input to specify all model hyperparameters and training related parameters such as learning rate, batch size, cuda device, etc. Most parameters in the training configuration files (i.e., files under model_configs/train/) are hopefully intutive based on their names, so we will only explain those parameters that might be confusing here.

- ranking: Ranking model or generation mode. True for Ranking, and false for Transduction.
- offline: Whether to use cached files under cache/.
- num_constants_per_group: Number of schema items in each chunk for BERT encoding.
- gq1: True for GraphQuestions, and false for GrailQA.
- use_sparql: Whether to use SPARQL as the target query. Set to be false, because in this paper we are using S-expressions.
- use_constrained_vocab: Whether to do vocabulary pruning or not.
- constrained_vocab: If we do vocabulary pruning, how to do it? Options include 1_step, 2_step and mix2.
- perfect_entity_linking: Whether to assume gold entities are given.

Training Command

To train the BERT-based model, run:

$ PYTHONHASHSEED=23 python run.py train model_configs/train/train_bert.jsonnet --include-package bert_constrained_seq2seq --include-package bert_seq2seq_reader --include-package utils.bert_interface -s [your_path_specified_for_training]

To train the GloVe-based model, run:

$ PYTHONHASHSEED=23 python run.py train model_configs/train/train_glove.jsonnet --include-package constrained_seq2seq --include-package constrained_seq2seq_reader -s [your_path_specified_for_training]

Online Running Time

We also show the running time of inference in online mode, in which offline caches are disabled. The aim of this setting is to mimic the real scenario in production. To report the average running time, we randomly sample 1,000 test questions for each model and run every model on a single GeoForce RTX 2080-ti GPU card with batch size 1. A comparison of different models is shown below:

Transduction Transduction-BERT Transduction-VP Transduction-BERT-VP Ranking Ranking-BERT
Running time (seconds) 60.899 50.176 4.787 1.932 115.459 80.892

The running time is quite significant when either ranking mode or vocabulary pruning is activated. This is because running SPARQL queries to query the 2-hop information (i.e., either candidate logical forms for ranking or 2-hop schema items for vocabulary pruning) is very time-consuming. This is also a general issue for the enumeration+ranking framework in KBQA, which is used by many existing methods. This issue has to some extend been underaddressed so far. A common practice is to use offline cache to store the exectuions of all related SPARQL queries, which assumes the test questions are known in advance. This assumption is true for existing KBQA benchmarks but is not realistic for a real production system. How to improve the efficiency of KBQA models while maintaining their efficacy is still an active area for research.

Citation

@inproceedings{gu2021beyond,
  title={Beyond IID: three levels of generalization for question answering on knowledge bases},
  author={Gu, Yu and Kase, Sue and Vanni, Michelle and Sadler, Brian and Liang, Percy and Yan, Xifeng and Su, Yu},
  booktitle={The World Wide Web Conference},
  year={2021},
  organization={ACM}
}
Owner
OSU DKI Lab
The Data, Knowledge, and Intelligence Lab at Ohio State University
OSU DKI Lab
PyTorch implementation of Federated Learning with Non-IID Data, and federated learning algorithms, including FedAvg, FedProx.

Federated Learning with Non-IID Data This is an implementation of the following paper: Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, Vik

Youngjoon Lee 48 Dec 29, 2022
Rethinking Nearest Neighbors for Visual Classification

Rethinking Nearest Neighbors for Visual Classification arXiv Environment settings Check out scripts/env_setup.sh Setup data Download the following fin

Menglin Jia 29 Oct 11, 2022
Code for ICLR2018 paper: Improving GAN Training via Binarized Representation Entropy (BRE) Regularization - Y. Cao · W Ding · Y.C. Lui · R. Huang

code for "Improving GAN Training via Binarized Representation Entropy (BRE) Regularization" (ICLR2018 paper) paper: https://arxiv.org/abs/1805.03644 G

21 Oct 12, 2020
Easy and comprehensive assessment of predictive power, with support for neuroimaging features

Documentation: https://raamana.github.io/neuropredict/ News As of v0.6, neuropredict now supports regression applications i.e. predicting continuous t

Pradeep Reddy Raamana 93 Nov 29, 2022
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
Contrastive Feature Loss for Image Prediction

Contrastive Feature Loss for Image Prediction We provide a PyTorch implementation of our contrastive feature loss presented in: Contrastive Feature Lo

Alex Andonian 44 Oct 05, 2022
Understanding Convolution for Semantic Segmentation

TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under

TuSimple 585 Dec 31, 2022
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set

Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje

Robert Krug 3 Feb 06, 2022
OneShot Learning-based hotword detection.

EfficientWord-Net Hotword detection based on one-shot learning Home assistants require special phrases called hotwords to get activated (eg:"ok google

ANT-BRaiN 102 Dec 25, 2022
[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore

[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6101 of Semester 1, AY2021-2022, starting from 08/2021. The instructors of

AccSrd 1 Sep 22, 2022
Multiple custom object count and detection using YOLOv3-Tiny method

Electronic-Component-YOLOv3 Introduce This project created to detect, count, and recognize multiple custom object using YOLOv3-Tiny method. The target

Derwin Mahardika 2 Nov 14, 2022
《Improving Unsupervised Image Clustering With Robust Learning》(2020)

Improving Unsupervised Image Clustering With Robust Learning This repo is the PyTorch codes for "Improving Unsupervised Image Clustering With Robust L

Sungwon Park 129 Dec 27, 2022
StyleGAN2-ADA - Official PyTorch implementation

Abstract: Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmenta

NVIDIA Research Projects 3.2k Dec 30, 2022
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022
Hand gesture recognition model that can be used as a remote control for a smart tv.

Gesture_recognition The training data consists of a few hundred videos categorised into one of the five classes. Each video (typically 2-3 seconds lon

Pratyush Negi 1 Aug 11, 2022
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.

VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt

Gengshan Yang 144 Dec 06, 2022
Code for paper [ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot] (ICCV 2021, oral))

ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot This repository is the official PyTorch implementation of ICCV-21 pape

Jiarui 21 May 09, 2022
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022