An Official Repo of CVPR '20 "MSeg: A Composite Dataset for Multi-Domain Segmentation"

Overview

Linux CI

Creative Commons License

This is the code for the paper:

MSeg: A Composite Dataset for Multi-domain Semantic Segmentation (CVPR 2020, Official Repo) [CVPR PDF] [Journal PDF]
John Lambert*, Zhuang Liu*, Ozan Sener, James Hays, Vladlen Koltun
Presented at CVPR 2020. Link to MSeg Video (3min)

NEWS:

  • [Dec. 2021]: An updated journal-length version of our work is now available on ArXiv here.

This repo is the first of 4 repos that introduce our work. It provides utilities to download the MSeg dataset (which is nontrivial), and prepare the data on disk in a unified taxonomy.

Three additional repos are also provided:

  • mseg-semantic: provides HRNet-W48 Training (sufficient to train a winning entry on the WildDash benchmark)
  • mseg-panoptic: provides Panoptic-FPN and Mask-RCNN training, based on Detectron2 (will be introduced in January 2021)
  • mseg-mturk: utilities to perform large-scale Mechanical Turk re-labeling

Install the MSeg module:

  • mseg can be installed as a python package using

      pip install -e /path_to_root_directory_of_the_repo/
    

Make sure that you can run import mseg in python, and you are good to go!

Download MSeg

The MSeg Taxonomy

We provide comprehensive class definitions and examples here. We provide here a master spreadsheet mapping all training datasets to the MSeg Taxonomy, and the MSeg Taxonomy to test datasets. Please consult taxonomy_FAQ.md to learn what each of the dataset taxonomy names means.

Citing MSeg

If you find this code useful for your research, please cite:

@InProceedings{MSeg_2020_CVPR,
author = {Lambert, John and Liu, Zhuang and Sener, Ozan and Hays, James and Koltun, Vladlen},
title = {{MSeg}: A Composite Dataset for Multi-domain Semantic Segmentation},
booktitle = {Computer Vision and Pattern Recognition (CVPR)},
year = {2020}
}

Repo Structure

  • download_scripts: code and instructions to download the entire MSeg dataset
  • mseg: Python module, including
    • dataset_apis
    • dataset_lists: ordered classnames for each dataset, and corresponding relative rgb/label file paths
    • label_preparation: code for remapping to semseg format, and for relabeling masks in place
    • relabeled_data: MSeg data, annotated by Mechanical Turk workers, and verified by co-authors
    • taxonomy: on-the-fly mapping to a unified taxonomy during training, and linear mapping to evaluation taxonomies
    • utils: library functions for mask and image manipulation, filesystem, tsv/csv reading, and multiprocessing
  • tests: unit tests on all code

Data License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Frequently Asked Questions (FAQ)

Q: Do the weights include the model structure or it's just the weights? If the latter, which model do these weights refer to? Under the models directory, there are several model implementations.

A: The pre-trained models follow the HRNet-W48 architecture. The model structure is defined in the code here. The saved weights provide a dictionary between keys (unique IDs for each weight identifying the corresponding layer/layer type) and values (the floating point weights).

Q: How is testing performed on the test datasets? In the paper you talk about "zero-shot transfer" -- how this is performed? Are the test dataset labels also mapped or included in the unified taxonomy? If you remapped the test dataset labels to the unified taxonomy, are the reported results the performances on the unified label space, or on each test dataset's original label space? How did you you obtain results on the WildDash dataset - which is evaluated by the server - when the MSeg taxonomy may be different from the WildDash dataset.

A: Regarding "zero-shot transfer", please refer to section "Using the MSeg taxonomy on a held-out dataset" on page 6 of our paper. This section describes how we hand-specify mappings from the unified taxonomy to each test dataset's taxonomy as a linear mapping (implemented here in mseg-api). All results are in the test dataset's original label space (i.e. if WildDash expects class indices in the range [0,18] per our names_list, our testing script uses the TaxonomyConverter transform_predictions_test() functionality to produce indices in that range, remapping probabilities.

Q: Why don't indices in MSeg_master.tsv match the training indices in individual datasets? For example, for the road class: In idd-39, road has index 0, but in idd-39-relabeled, road has index 19. It is index 7 in cityscapes-34. The cityscapes-19-relabeled index road is 11. As far as I can tell, ultimately the 'MSeg_Master.tsv' file provides the final mapping to the MSeg label space. But here, the road class seems to have an index of 98, which is neither 19 nor 11.

A: Indeed, unified taxonomy class index 98 represents "road". But we use the TaxonomyConverter to accomplish the mapping on the fly from idd-39-relabeled to the unified/universal taxonomy (we use the terms "unified" and "universal" interchangeably). This is done by adding a transform in the training loop that calls TaxonomyConverter.transform_label() on the fly. You can see how that transform is implemented here in mseg-semantic.

Q: When testing, but there are test classes that are not in the unified taxonomy (e.g. Parking, railtrack, bridge etc. in WildDash), how do you produce predictions for that class? I understand you map the predictions with a binary matrix. But what do you do when there's no one-to-one correspondence?

A: WildDash v1 uses the 19-class taxonomy for evaluation, just like Cityscapes. So we use the following script to remap the 34-class taxonomy to 19-class taxonomy for WildDash for testing inference and submission. You can see how Cityscapes evaluates just 19 of the 34 classes here in the evaluation script and in the taxonomy definition. However, bridge and rail track are actually included in our unified taxonomy, as you’ll see in MSeg_master.tsv.

Q: How are datasets images read in for training/inference? Should I use the dataset_apis from mseg-api?

A: The dataset_apis from mseg-api are not for training or inference. They are purely for generating the MSeg dataset labels on disk. We read in the datasets using mseg_semantic/utils/dataset.py and then remap them to the universal space on the fly.

Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
Efficient Deep Learning Systems course

Efficient Deep Learning Systems This repository contains materials for the Efficient Deep Learning Systems course taught at the Faculty of Computer Sc

Max Ryabinin 173 Dec 29, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Fast, general, and tested differentiable structured prediction in PyTorch

HNLP 1.1k Dec 16, 2022
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022
A simple, high level, easy-to-use open source Computer Vision library for Python.

ZoomVision : Slicing Aid Detection A simple, high level, easy-to-use open source Computer Vision library for Python. Installation Installing dependenc

Nurettin Sinanoğlu 2 Mar 04, 2022
PyTorch implementation of MulMON

MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi

NanboLi 16 Nov 03, 2022
Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI)

Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI) Preparation Clone the Synchronized-BatchNorm-P

Fangneng Zhan 12 Aug 10, 2022
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

538 Jan 09, 2023
CoRe: Contrastive Recurrent State-Space Models

CoRe: Contrastive Recurrent State-Space Models This code implements the CoRe model and reproduces experimental results found in Robust Robotic Control

Apple 21 Aug 11, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 364 Dec 28, 2022
Prototype-based Incremental Few-Shot Semantic Segmentation

Prototype-based Incremental Few-Shot Semantic Segmentation Fabio Cermelli, Massimiliano Mancini, Yongqin Xian, Zeynep Akata, Barbara Caputo -- BMVC 20

Fabio Cermelli 21 Dec 29, 2022
Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

JinTian 20 Oct 17, 2022
HomoInterpGAN - Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation

HomoInterpGAN Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation (CVPR 2019, oral) Installation The implementation is base

Ying-Cong Chen 99 Nov 15, 2022
A module for solving and visualizing Schrödinger equation.

qmsolve This is an attempt at making a solid, easy to use solver, capable of solving and visualize the Schrödinger equation for multiple particles, an

506 Dec 28, 2022
Curved Projection Reformation

Description Assuming that we already know the image of the centerline, we want the lumen to be displayed on a plane, which requires curved projection

夜听残荷 5 Sep 11, 2022
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
WormMovementSimulation - 3D Simulation of Worm Body Movement with Neurons attached to its body

Generate 3D Locomotion Data This module is intended to create 2D video trajector

1 Aug 09, 2022
A toolkit for controlling Euro Truck Simulator 2 with python to develop self-driving algorithms.

europilot Overview Europilot is an open source project that leverages the popular Euro Truck Simulator(ETS2) to develop self-driving algorithms. A con

1.4k Jan 04, 2023