An Official Repo of CVPR '20 "MSeg: A Composite Dataset for Multi-Domain Segmentation"

Overview

Linux CI

Creative Commons License

This is the code for the paper:

MSeg: A Composite Dataset for Multi-domain Semantic Segmentation (CVPR 2020, Official Repo) [CVPR PDF] [Journal PDF]
John Lambert*, Zhuang Liu*, Ozan Sener, James Hays, Vladlen Koltun
Presented at CVPR 2020. Link to MSeg Video (3min)

NEWS:

  • [Dec. 2021]: An updated journal-length version of our work is now available on ArXiv here.

This repo is the first of 4 repos that introduce our work. It provides utilities to download the MSeg dataset (which is nontrivial), and prepare the data on disk in a unified taxonomy.

Three additional repos are also provided:

  • mseg-semantic: provides HRNet-W48 Training (sufficient to train a winning entry on the WildDash benchmark)
  • mseg-panoptic: provides Panoptic-FPN and Mask-RCNN training, based on Detectron2 (will be introduced in January 2021)
  • mseg-mturk: utilities to perform large-scale Mechanical Turk re-labeling

Install the MSeg module:

  • mseg can be installed as a python package using

      pip install -e /path_to_root_directory_of_the_repo/
    

Make sure that you can run import mseg in python, and you are good to go!

Download MSeg

The MSeg Taxonomy

We provide comprehensive class definitions and examples here. We provide here a master spreadsheet mapping all training datasets to the MSeg Taxonomy, and the MSeg Taxonomy to test datasets. Please consult taxonomy_FAQ.md to learn what each of the dataset taxonomy names means.

Citing MSeg

If you find this code useful for your research, please cite:

@InProceedings{MSeg_2020_CVPR,
author = {Lambert, John and Liu, Zhuang and Sener, Ozan and Hays, James and Koltun, Vladlen},
title = {{MSeg}: A Composite Dataset for Multi-domain Semantic Segmentation},
booktitle = {Computer Vision and Pattern Recognition (CVPR)},
year = {2020}
}

Repo Structure

  • download_scripts: code and instructions to download the entire MSeg dataset
  • mseg: Python module, including
    • dataset_apis
    • dataset_lists: ordered classnames for each dataset, and corresponding relative rgb/label file paths
    • label_preparation: code for remapping to semseg format, and for relabeling masks in place
    • relabeled_data: MSeg data, annotated by Mechanical Turk workers, and verified by co-authors
    • taxonomy: on-the-fly mapping to a unified taxonomy during training, and linear mapping to evaluation taxonomies
    • utils: library functions for mask and image manipulation, filesystem, tsv/csv reading, and multiprocessing
  • tests: unit tests on all code

Data License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Frequently Asked Questions (FAQ)

Q: Do the weights include the model structure or it's just the weights? If the latter, which model do these weights refer to? Under the models directory, there are several model implementations.

A: The pre-trained models follow the HRNet-W48 architecture. The model structure is defined in the code here. The saved weights provide a dictionary between keys (unique IDs for each weight identifying the corresponding layer/layer type) and values (the floating point weights).

Q: How is testing performed on the test datasets? In the paper you talk about "zero-shot transfer" -- how this is performed? Are the test dataset labels also mapped or included in the unified taxonomy? If you remapped the test dataset labels to the unified taxonomy, are the reported results the performances on the unified label space, or on each test dataset's original label space? How did you you obtain results on the WildDash dataset - which is evaluated by the server - when the MSeg taxonomy may be different from the WildDash dataset.

A: Regarding "zero-shot transfer", please refer to section "Using the MSeg taxonomy on a held-out dataset" on page 6 of our paper. This section describes how we hand-specify mappings from the unified taxonomy to each test dataset's taxonomy as a linear mapping (implemented here in mseg-api). All results are in the test dataset's original label space (i.e. if WildDash expects class indices in the range [0,18] per our names_list, our testing script uses the TaxonomyConverter transform_predictions_test() functionality to produce indices in that range, remapping probabilities.

Q: Why don't indices in MSeg_master.tsv match the training indices in individual datasets? For example, for the road class: In idd-39, road has index 0, but in idd-39-relabeled, road has index 19. It is index 7 in cityscapes-34. The cityscapes-19-relabeled index road is 11. As far as I can tell, ultimately the 'MSeg_Master.tsv' file provides the final mapping to the MSeg label space. But here, the road class seems to have an index of 98, which is neither 19 nor 11.

A: Indeed, unified taxonomy class index 98 represents "road". But we use the TaxonomyConverter to accomplish the mapping on the fly from idd-39-relabeled to the unified/universal taxonomy (we use the terms "unified" and "universal" interchangeably). This is done by adding a transform in the training loop that calls TaxonomyConverter.transform_label() on the fly. You can see how that transform is implemented here in mseg-semantic.

Q: When testing, but there are test classes that are not in the unified taxonomy (e.g. Parking, railtrack, bridge etc. in WildDash), how do you produce predictions for that class? I understand you map the predictions with a binary matrix. But what do you do when there's no one-to-one correspondence?

A: WildDash v1 uses the 19-class taxonomy for evaluation, just like Cityscapes. So we use the following script to remap the 34-class taxonomy to 19-class taxonomy for WildDash for testing inference and submission. You can see how Cityscapes evaluates just 19 of the 34 classes here in the evaluation script and in the taxonomy definition. However, bridge and rail track are actually included in our unified taxonomy, as you’ll see in MSeg_master.tsv.

Q: How are datasets images read in for training/inference? Should I use the dataset_apis from mseg-api?

A: The dataset_apis from mseg-api are not for training or inference. They are purely for generating the MSeg dataset labels on disk. We read in the datasets using mseg_semantic/utils/dataset.py and then remap them to the universal space on the fly.

Deep learned, hardware-accelerated 3D object pose estimation

Isaac ROS Pose Estimation Overview This repository provides NVIDIA GPU-accelerated packages for 3D object pose estimation. Using a deep learned pose e

NVIDIA Isaac ROS 41 Dec 18, 2022
Portfolio analytics for quants, written in Python

QuantStats: Portfolio analytics for quants QuantStats Python library that performs portfolio profiling, allowing quants and portfolio managers to unde

Ran Aroussi 2.7k Jan 08, 2023
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"

MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp

Van 7 Dec 23, 2022
Object detection on multiple datasets with an automatically learned unified label space.

Simple multi-dataset detection An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of E

Xingyi Zhou 407 Dec 30, 2022
The original weights of some Caffe models, ported to PyTorch.

pytorch-caffe-models This repo contains the original weights of some Caffe models, ported to PyTorch. Currently there are: GoogLeNet (Going Deeper wit

Katherine Crowson 9 Nov 04, 2022
基于PaddleClas实现垃圾分类,并转换为inference格式用PaddleHub服务端部署

百度网盘链接及提取码: 链接:https://pan.baidu.com/s/1HKpgakNx1hNlOuZJuW6T1w 提取码:wylx 一个垃圾分类项目带你玩转飞桨多个产品(1) 基于PaddleClas实现垃圾分类,导出inference模型并利用PaddleHub Serving进行服务

thomas-yanxin 22 Jul 12, 2022
Experiments for Operating Systems Lab (ETCS-352)

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Deekshant Wadhwa 0 Sep 06, 2022
Erpnext app for make employee salary on payroll entry based on one or more project with percentage for all project equal 100 %

Project Payroll this app for make payroll for employee based on projects like project on 30 % and project 2 70 % as account dimension it makes genral

Ibrahim Morghim 8 Jan 02, 2023
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
Learning Neural Painters Fast! using PyTorch and Fast.ai

The Joy of Neural Painting Learning Neural Painters Fast! using PyTorch and Fast.ai Blogpost with more details: The Joy of Neural Painting The impleme

Libre AI 72 Nov 10, 2022
E2C implementation in PyTorch

Embed to Control implementation in PyTorch Paper can be found here: https://arxiv.org/abs/1506.07365 You will need a patched version of OpenAI Gym in

Yicheng Luo 42 Dec 12, 2022
Multimodal Descriptions of Social Concepts: Automatic Modeling and Detection of (Highly Abstract) Social Concepts evoked by Art Images

MUSCO - Multimodal Descriptions of Social Concepts Automatic Modeling of (Highly Abstract) Social Concepts evoked by Art Images This project aims to i

0 Aug 22, 2021
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

15 Aug 30, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022
Official Implementation of LARGE: Latent-Based Regression through GAN Semantics

LARGE: Latent-Based Regression through GAN Semantics [Project Website] [Google Colab] [Paper] LARGE: Latent-Based Regression through GAN Semantics Yot

83 Dec 06, 2022
Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021 (Oral)

Quasi-Dense Tracking This is the offical implementation of paper Quasi-Dense Similarity Learning for Multiple Object Tracking. We present a trailer th

ETH VIS Research Group 327 Dec 27, 2022
This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints

CLGo This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints An earlier

刘芮金 32 Dec 20, 2022
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

AugMix Introduction We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented ima

Google Research 876 Dec 17, 2022