HomoInterpGAN - Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation

Overview

HomoInterpGAN

Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation (CVPR 2019, oral)

Installation

The implementation is based on pytorch. Our model is trained and tested on version 1.0.1.post2. Please install relevant packages based on your own environment.

All other required packages are listed in "requirements.txt". Please run

pip install -r requirements.txt

to install these packages.

Dataset

Download the "Align&Cropped Images" of the CelebA dataset. If the original link is unavailable, you can also download it here.

Training

Firstly, cd to the project directory and run

export PYTHONPATH=./:$PYTHONPATH

before executing any script.

To train a model on CelebA, please run

python run.py train --data_dir CELEBA_ALIGNED_DIR -sp checkpoints/CelebA -bs 128 -gpu 0,1,2,3 

Key arguments

--data_dir: The path of the celeba_aligned images. 
-sp: The trained model and logs, intermediate results are stored in this directory.
-bs: Batch size.
-gpu: The GPU index.
--attr: This specifies the target attributes. Note that we concatenate multiple attributes defined in CelebA as our grouped attribute. We use "@" to group multiple multiple attributes to a grouped one (e.g., [email protected] forms a "expression" attriute). We use "," to split different grouped attributes. See the default argument of "run.py" for details. 

Testing

python run.py attribute_manipulation -mp checkpoints/CelebA -sp checkpoints/CelebA/test/Smiling  --filter_target_attr Smiling -s 1 --branch_idx 0 --n_ref 5 -bs 8

This conducts attribute manipulation with reference samples selected in CelebA dataset. The reference samples are selected based on their attributes (--filter_target_attr), and the interpolation path should be chosen accordingly.

Key arguments:

1, the effect is exaggerated. -bs: the batch size of the testing images. -n_ref: the number of images used as reference. ">
-mp: the model path. The checkpoints of encoder, interpolator and decoder should be stored in this path.
-sp: the save path of the results.
--filter_target_attr: This specifies the attributes of the reference images. The attribute names can be found in "info/attribute_names.txt". We can specify one attribute (e.g., "Smiling") or several attributes (e.g., "[email protected]_Slightly_Open" will filter mouth open smiling reference images). To filter negative samples, add "NOT" as prefix to the attribute names, such as "NOTSmiling", "[email protected]_Slightly_Open".
--branch_idx: This specifies the branch index of the interpolator. Each branch handles a group of attribute. Note that the physical meaning of each branch is specified by "--attr" during testing. 
-s: The strength of the manipulation. Range of [0, 2] is suggested. If s>1, the effect is exaggerated.
-bs: the batch size of the testing images. 
-n_ref: the number of images used as reference. 

Testing on unaligned images

Note the the performance could degenerate if the testing image is not well aligned. Thus we also provide a tool for face alignment. Please place all your testing images to a folder (e.g., examples/original), then run

python facealign/align_all.py examples/original examples/aligned

to align testing images to an samples in CelebA. Then you can run manipulation by

python run.py attribute_manipulation -mp checkpoints/CelebA -sp checkpoints/CelebA/test/Smiling  --filter_target_attr Smiling -s 1 --branch_idx 0 --n_ref 5 -bs 8 --test_folder examples/aligned

Note that an additional argument "--test_folder" is specified.

Pretrained model

We have also provided a pretrained model here. It is trained with default parameters. The meaning of each branch of the interpolator is listed bellow.

Branch index Grouped attribute Corresponding labels on CelebA
1 Expression Mouth_Slightly_Open, Smiling
2 Gender trait Male, No_Beard, Mustache, Goatee, Sideburns
3 Hair color Black_Hair, Blond_Hair, Brown_Hair, Gray_Hair
4 Hair style Bald, Receding_Hairline, Bangs
5 Age Young

Updates

  • Jun 17, 2019: It is observed that the face alignment tool is not perfect, and the results of "Testing on unaligned images" does not perform as well as results in CelebA dataset. To make the model less sensitive of the alignment issue, we add random shifting in center_crop during training. The shifting range can be controlled by "--random_crop_bias". We have updated the pretarined model by fine-tuning it with "random_crop_bias=10", which leads to better results in unaligned images.

Reference

Ying-Cong Chen, Xiaogang Xu, Zhuotao Tian, Jiaya Jia, "Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation" , Computer Vision and Pattern Recognition (CVPR), 2019 PDF

@inproceedings{chen2019Homomorphic,
  title={Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation},
  author={Chen, Ying-Cong and Xu, Xiaogang and Tian, Zhuotao and Jia, Jiaya},
  booktitle={CVPR},
  year={2019}
}

Contect

Please contact [email protected] if you have any question or suggestion.

Owner
Ying-Cong Chen
Ying-Cong Chen
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

PS-SC GAN This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction c

Xinqi/Steven Zhu 40 Dec 16, 2022
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
Data Preparation, Processing, and Visualization for MoVi Data

MoVi-Toolbox Data Preparation, Processing, and Visualization for MoVi Data, https://www.biomotionlab.ca/movi/ MoVi is a large multipurpose dataset of

Saeed Ghorbani 51 Nov 27, 2022
A `Neural = Symbolic` framework for sound and complete weighted real-value logic

Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s

International Business Machines 138 Dec 19, 2022
PConv-Keras - Unofficial implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions". Try at: www.fixmyphoto.ai

Partial Convolutions for Image Inpainting using Keras Keras implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions", https

Mathias Gruber 871 Jan 05, 2023
Official implementation of the paper Momentum Capsule Networks (MoCapsNet)

Momentum Capsule Network Official implementation of the paper Momentum Capsule Networks (MoCapsNet). Abstract Capsule networks are a class of neural n

8 Oct 20, 2022
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022
Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Self-Classifier: Self-Supervised Classification Network Official PyTorch implementation and pretrained models of the paper Self-Supervised Classificat

Elad Amrani 24 Dec 21, 2022
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network

MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network This repository is the official implementation of MatchGAN: A S

Justin Sun 12 Dec 27, 2022
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in

73 Nov 30, 2022
🔮 A refreshing functional take on deep learning, compatible with your favorite libraries

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries From the makers of spaCy, Prodigy and FastAPI Thinc is a

Explosion 2.6k Dec 30, 2022
Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps

Range Image-based 3D LiDAR Localization This repo contains the code for our ICRA2021 paper: Range Image-based LiDAR Localization for Autonomous Vehicl

Photogrammetry & Robotics Bonn 208 Dec 15, 2022
"Inductive Entity Representations from Text via Link Prediction" @ The Web Conference 2021

Inductive entity representations from text via link prediction This repository contains the code used for the experiments in the paper "Inductive enti

Daniel Daza 45 Jan 09, 2023
The repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection".

I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection Updates | Introduction | Results | Usage | Citation |

33 Jan 05, 2023
Taming Transformers for High-Resolution Image Synthesis

Taming Transformers for High-Resolution Image Synthesis CVPR 2021 (Oral) Taming Transformers for High-Resolution Image Synthesis Patrick Esser*, Robin

CompVis Heidelberg 3.5k Jan 03, 2023
A disassembler for the RP2040 Programmable I/O State-machine!

piodisasm A disassembler for the RP2040 Programmable I/O State-machine! Usage Just run piodisasm.py on a file that contains the PIO code as hex! (Such

Ghidra Ninja 29 Dec 06, 2022
Moment-DETR code and QVHighlights dataset

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Chang-Shu Chung 1.3k Jan 07, 2023