HomoInterpGAN - Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation

Overview

HomoInterpGAN

Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation (CVPR 2019, oral)

Installation

The implementation is based on pytorch. Our model is trained and tested on version 1.0.1.post2. Please install relevant packages based on your own environment.

All other required packages are listed in "requirements.txt". Please run

pip install -r requirements.txt

to install these packages.

Dataset

Download the "Align&Cropped Images" of the CelebA dataset. If the original link is unavailable, you can also download it here.

Training

Firstly, cd to the project directory and run

export PYTHONPATH=./:$PYTHONPATH

before executing any script.

To train a model on CelebA, please run

python run.py train --data_dir CELEBA_ALIGNED_DIR -sp checkpoints/CelebA -bs 128 -gpu 0,1,2,3 

Key arguments

--data_dir: The path of the celeba_aligned images. 
-sp: The trained model and logs, intermediate results are stored in this directory.
-bs: Batch size.
-gpu: The GPU index.
--attr: This specifies the target attributes. Note that we concatenate multiple attributes defined in CelebA as our grouped attribute. We use "@" to group multiple multiple attributes to a grouped one (e.g., [email protected] forms a "expression" attriute). We use "," to split different grouped attributes. See the default argument of "run.py" for details. 

Testing

python run.py attribute_manipulation -mp checkpoints/CelebA -sp checkpoints/CelebA/test/Smiling  --filter_target_attr Smiling -s 1 --branch_idx 0 --n_ref 5 -bs 8

This conducts attribute manipulation with reference samples selected in CelebA dataset. The reference samples are selected based on their attributes (--filter_target_attr), and the interpolation path should be chosen accordingly.

Key arguments:

1, the effect is exaggerated. -bs: the batch size of the testing images. -n_ref: the number of images used as reference. ">
-mp: the model path. The checkpoints of encoder, interpolator and decoder should be stored in this path.
-sp: the save path of the results.
--filter_target_attr: This specifies the attributes of the reference images. The attribute names can be found in "info/attribute_names.txt". We can specify one attribute (e.g., "Smiling") or several attributes (e.g., "[email protected]_Slightly_Open" will filter mouth open smiling reference images). To filter negative samples, add "NOT" as prefix to the attribute names, such as "NOTSmiling", "[email protected]_Slightly_Open".
--branch_idx: This specifies the branch index of the interpolator. Each branch handles a group of attribute. Note that the physical meaning of each branch is specified by "--attr" during testing. 
-s: The strength of the manipulation. Range of [0, 2] is suggested. If s>1, the effect is exaggerated.
-bs: the batch size of the testing images. 
-n_ref: the number of images used as reference. 

Testing on unaligned images

Note the the performance could degenerate if the testing image is not well aligned. Thus we also provide a tool for face alignment. Please place all your testing images to a folder (e.g., examples/original), then run

python facealign/align_all.py examples/original examples/aligned

to align testing images to an samples in CelebA. Then you can run manipulation by

python run.py attribute_manipulation -mp checkpoints/CelebA -sp checkpoints/CelebA/test/Smiling  --filter_target_attr Smiling -s 1 --branch_idx 0 --n_ref 5 -bs 8 --test_folder examples/aligned

Note that an additional argument "--test_folder" is specified.

Pretrained model

We have also provided a pretrained model here. It is trained with default parameters. The meaning of each branch of the interpolator is listed bellow.

Branch index Grouped attribute Corresponding labels on CelebA
1 Expression Mouth_Slightly_Open, Smiling
2 Gender trait Male, No_Beard, Mustache, Goatee, Sideburns
3 Hair color Black_Hair, Blond_Hair, Brown_Hair, Gray_Hair
4 Hair style Bald, Receding_Hairline, Bangs
5 Age Young

Updates

  • Jun 17, 2019: It is observed that the face alignment tool is not perfect, and the results of "Testing on unaligned images" does not perform as well as results in CelebA dataset. To make the model less sensitive of the alignment issue, we add random shifting in center_crop during training. The shifting range can be controlled by "--random_crop_bias". We have updated the pretarined model by fine-tuning it with "random_crop_bias=10", which leads to better results in unaligned images.

Reference

Ying-Cong Chen, Xiaogang Xu, Zhuotao Tian, Jiaya Jia, "Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation" , Computer Vision and Pattern Recognition (CVPR), 2019 PDF

@inproceedings{chen2019Homomorphic,
  title={Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation},
  author={Chen, Ying-Cong and Xu, Xiaogang and Tian, Zhuotao and Jia, Jiaya},
  booktitle={CVPR},
  year={2019}
}

Contect

Please contact [email protected] if you have any question or suggestion.

Owner
Ying-Cong Chen
Ying-Cong Chen
ByteTrack with ReID module following the paradigm of FairMOT, tracking strategy is borrowed from FairMOT/JDE.

ByteTrack_ReID ByteTrack is the SOTA tracker in MOT benchmarks with strong detector YOLOX and a simple association strategy only based on motion infor

Han GuangXin 46 Dec 29, 2022
Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

📖 Depth-Aware Generative Adversarial Network for Talking Head Video Generation (CVPR 2022) 🔥 If DaGAN is helpful in your photos/projects, please hel

Fa-Ting Hong 503 Jan 04, 2023
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction 🥼 Predicts the likelihood of Polycystic Ovary Syndrome based on

Samantha Van Seters 1 Jan 10, 2022
Joint parameterization and fitting of stroke clusters

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Al

Dave Pagurek 44 Dec 01, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
GAN-generated image detection based on CNNs

GAN-image-detection This repository contains a GAN-generated image detector developed to distinguish real images from synthetic ones. The detector is

Image and Sound Processing Lab 17 Dec 15, 2022
Simple reference implementation of GraphSAGE.

Reference PyTorch GraphSAGE Implementation Author: William L. Hamilton Basic reference PyTorch implementation of GraphSAGE. This reference implementat

William L Hamilton 861 Jan 06, 2023
POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propagation including diffraction

POPPY: Physical Optics Propagation in Python POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propaga

Space Telescope Science Institute 132 Dec 15, 2022
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022
Api's bulid in Flask perfom to manage Todo Task.

Citymall-task Api's bulid in Flask perfom to manage Todo Task. Installation Requrements : Python: 3.10.0 MongoDB create .env file with variables DB_UR

Aisha Tayyaba 1 Dec 17, 2021
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.

vid2vid Project | YouTube(short) | YouTube(full) | arXiv | Paper(full) Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic vid

NVIDIA Corporation 8.1k Jan 01, 2023
⚾🤖⚾ Automatic baseball pitching overlay in realtime

âš¾ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

Tony Chou 240 Dec 05, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
Pytorch port of Google Research's LEAF Audio paper

leaf-audio-pytorch Pytorch port of Google Research's LEAF Audio paper published at ICLR 2021. This port is not completely finished, but the Leaf() fro

Dennis Fedorishin 80 Oct 31, 2022
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
Weakly Supervised Text-to-SQL Parsing through Question Decomposition

Weakly Supervised Text-to-SQL Parsing through Question Decomposition The official repository for the paper "Weakly Supervised Text-to-SQL Parsing thro

14 Dec 19, 2022
The Balloon Learning Environment - flying stratospheric balloons with deep reinforcement learning.

Balloon Learning Environment Docs The Balloon Learning Environment (BLE) is a simulator for stratospheric balloons. It is designed as a benchmark envi

Google 87 Dec 25, 2022
an Evolutionary Algorithm assisted GAN

EvoGAN an Evolutionary Algorithm assisted GAN ckpts

3 Oct 09, 2022
AlphaBot2 Pi Core software for interfacing with the various components.

AlphaBot2-Pi-Core AlphaBot2 Pi Core software for interfacing with the various components. This project is currently a W.I.P. I will update this readme

KyleDev 1 Feb 13, 2022