Credit Fraud detection: Context: It is important that credit card companies are able to recognize fraudulent credit card transactions so that customers are not charged for items that they did not purchase. Dataset Location : This dataset could be found at https://www.kaggle.com/mlg-ulb/creditcardfraud This dataset (creditcard.csv) was provided by KAGGLE The dataset contains transactions made by credit cards in September 2013 by European cardholders. It contains only numerical input variables which are the result of a PCA transformation. Unfortunately, due to confidentiality issues, we cannot provide the original features and more background information about the data. Features V1, V2, … V28 are the principal components obtained with PCA, the only features which have not been transformed with PCA are 'Time' and 'Amount'. Feature 'Time' contains the seconds elapsed between each transaction and the first transaction in the dataset. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. Feature 'Class' is the response variable and it takes value 1 in case of fraud and 0 otherwise. This dataset is already preprocessed. I began with splitting the dataset into train and test sets with a split of 0.75:0.25, Did a brief analysis and checked that the dataset contains 99.8% of the values are labeled as not fraud and only 0.2% are labeled as fraud. I bootstrapped the data by upsampling the training dataset because if we had only a few positives relative to negatives, the training model will spend most of its time on negative examples and not learn enough from positive ones. Therefore I bootstrapped the data to make it balanced. Then I applied Random Forest with the number of trees = 20 and determined which were the most important features for our model. I followed with Logistic Regression Then finally I followed by a Gaussian Naive Bayes I tested all three models for accuracy, precision, recall and f1 score. The Random Forest model has better accuaracy and precision than the Logistic Regression and Gaussian Naive Bayes models, but Logistic regression has the best recall, yet Random Forest has the best f1 score which is the harmonic average between precision and recall.
Credit fraud detection in Python using a Jupyter Notebook
Overview
Array Camera Ptychography
Array Camera Ptychography This repository provides the code for the following papers: Schulz, Timothy J., David J. Brady, and Chengyu Wang. "Photon-li
DC540 hacking challenge 0x00005a.
dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.
Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di
Bayesian algorithm execution (BAX)
Bayesian Algorithm Execution (BAX) Code for the paper: Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mut
This is the Pytorch implementation of Progressive Attentional Manifold Alignment.
PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code
sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ
Convert BART models to ONNX with quantization. 3X reduction in size, and upto 3X boost in inference speed
fast-Bart Reduction of BART model size by 3X, and boost in inference speed up to 3X BART implementation of the fastT5 library (https://github.com/Ki6a
Multi-Modal Machine Learning toolkit based on PaddlePaddle.
简体中文 | English PaddleMM 简介 飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 PaddleMM 初始版本 v1.0 特性 丰富的任务
Instant-nerf-pytorch - NeRF trained SUPER FAST in pytorch
instant-nerf-pytorch This is WORK IN PROGRESS, please feel free to contribute vi
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).
DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho
DECAF: Deep Extreme Classification with Label Features
DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain
Data Augmentation with Variational Autoencoders
Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con
Pyeventbus: a publish/subscribe event bus
pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and
We evaluate our method on different datasets (including ShapeNet, CUB-200-2011, and Pascal3D+) and achieve state-of-the-art results, outperforming all the other supervised and unsupervised methods and 3D representations, all in terms of performance, accuracy, and training time.
An Effective Loss Function for Generating 3D Models from Single 2D Image without Rendering Papers with code | Paper Nikola Zubić Pietro Lio University
subpixel: A subpixel convnet for super resolution with Tensorflow
subpixel: A subpixel convolutional neural network implementation with Tensorflow Left: input images / Right: output images with 4x super-resolution af
Enigma-Plus - Python based Enigma machine simulator with some extra features
Enigma-Plus Python based Enigma machine simulator with some extra features Examp
This repository contains datasets and baselines for benchmarking Chinese text recognition.
Benchmarking-Chinese-Text-Recognition This repository contains datasets and baselines for benchmarking Chinese text recognition. Please see the corres
Neighborhood Contrastive Learning for Novel Class Discovery
Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv
NHL 94 AI contests
nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH