Credit Fraud detection: Context: It is important that credit card companies are able to recognize fraudulent credit card transactions so that customers are not charged for items that they did not purchase. Dataset Location : This dataset could be found at https://www.kaggle.com/mlg-ulb/creditcardfraud This dataset (creditcard.csv) was provided by KAGGLE The dataset contains transactions made by credit cards in September 2013 by European cardholders. It contains only numerical input variables which are the result of a PCA transformation. Unfortunately, due to confidentiality issues, we cannot provide the original features and more background information about the data. Features V1, V2, … V28 are the principal components obtained with PCA, the only features which have not been transformed with PCA are 'Time' and 'Amount'. Feature 'Time' contains the seconds elapsed between each transaction and the first transaction in the dataset. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. Feature 'Class' is the response variable and it takes value 1 in case of fraud and 0 otherwise. This dataset is already preprocessed. I began with splitting the dataset into train and test sets with a split of 0.75:0.25, Did a brief analysis and checked that the dataset contains 99.8% of the values are labeled as not fraud and only 0.2% are labeled as fraud. I bootstrapped the data by upsampling the training dataset because if we had only a few positives relative to negatives, the training model will spend most of its time on negative examples and not learn enough from positive ones. Therefore I bootstrapped the data to make it balanced. Then I applied Random Forest with the number of trees = 20 and determined which were the most important features for our model. I followed with Logistic Regression Then finally I followed by a Gaussian Naive Bayes I tested all three models for accuracy, precision, recall and f1 score. The Random Forest model has better accuaracy and precision than the Logistic Regression and Gaussian Naive Bayes models, but Logistic regression has the best recall, yet Random Forest has the best f1 score which is the harmonic average between precision and recall.
Credit fraud detection in Python using a Jupyter Notebook
Overview
SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement
SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement This repository implements the approach described in SporeAgent: Reinforced
[Machine Learning Engineer Basic Guide] 부스트캠프 AI Tech - Product Serving 자료
Boostcamp-AI-Tech-Product-Serving 부스트캠프 AI Tech - Product Serving 자료 Repository 구조 part1(MLOps 개론, Model Serving, 머신러닝 프로젝트 라이프 사이클은 별도의 코드가 없으며, part
Active window border replacement for window managers.
xborder Active window border replacement for window managers. Usage git clone https://github.com/deter0/xborder cd xborder chmod +x xborders ./xborder
Sequence Modeling with Structured State Spaces
Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)
Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat
Deep Learning applied to Integral data analysis
DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in
Hypernetwork-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels
Hypernet-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels The implementation of Hypernet-Ensemble Le
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]
TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at
11 Dec 13, 2022
[SIGGRAPH Asia 2021] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning.
DeepVecFont This is the homepage for "DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning". Yizhi Wang and Zhouhui Lian. WI
Unity Propagation in Bayesian Networks Handling Inconsistency via Unity Smoothing
This repository contains the scripts needed to generate the results from the paper Unity Propagation in Bayesian Networks Handling Inconsistency via U
Code for STFT Transformer used in BirdCLEF 2021 competition.
STFT_Transformer Code for STFT Transformer used in BirdCLEF 2021 competition. The STFT Transformer is a new way to use Transformers similar to Vision
End-to-End Object Detection with Fully Convolutional Network
This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.
GluonMM is a library of transformer models for computer vision and multi-modality research
GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"
This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction. NeurIPS 2021.
This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer
OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran
YKKDetector For Python
YKKDetector OpenCVを利用した機械学習データをもとに、VRChatのスクリーンショットなどからYKKさん(もとい「幽狐族のお姉様」)を検出できるソフトウェアです。 マニュアル こちらから実行環境のセットアップから解説する詳細なマニュアルをご覧いただけます。 ライセンス 本ソフトウェア
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)
3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra
A Marvelous ChatBot implement using PyTorch.
PyTorch Marvelous ChatBot [Update] it's 2019 now, previously model can not catch up state-of-art now. So we just move towards the future a transformer
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.
Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend