Credit Fraud detection: Context: It is important that credit card companies are able to recognize fraudulent credit card transactions so that customers are not charged for items that they did not purchase. Dataset Location : This dataset could be found at https://www.kaggle.com/mlg-ulb/creditcardfraud This dataset (creditcard.csv) was provided by KAGGLE The dataset contains transactions made by credit cards in September 2013 by European cardholders. It contains only numerical input variables which are the result of a PCA transformation. Unfortunately, due to confidentiality issues, we cannot provide the original features and more background information about the data. Features V1, V2, … V28 are the principal components obtained with PCA, the only features which have not been transformed with PCA are 'Time' and 'Amount'. Feature 'Time' contains the seconds elapsed between each transaction and the first transaction in the dataset. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. Feature 'Class' is the response variable and it takes value 1 in case of fraud and 0 otherwise. This dataset is already preprocessed. I began with splitting the dataset into train and test sets with a split of 0.75:0.25, Did a brief analysis and checked that the dataset contains 99.8% of the values are labeled as not fraud and only 0.2% are labeled as fraud. I bootstrapped the data by upsampling the training dataset because if we had only a few positives relative to negatives, the training model will spend most of its time on negative examples and not learn enough from positive ones. Therefore I bootstrapped the data to make it balanced. Then I applied Random Forest with the number of trees = 20 and determined which were the most important features for our model. I followed with Logistic Regression Then finally I followed by a Gaussian Naive Bayes I tested all three models for accuracy, precision, recall and f1 score. The Random Forest model has better accuaracy and precision than the Logistic Regression and Gaussian Naive Bayes models, but Logistic regression has the best recall, yet Random Forest has the best f1 score which is the harmonic average between precision and recall.
Credit fraud detection in Python using a Jupyter Notebook
Overview
CAR-API: Cityscapes Attributes Recognition API
CAR-API: Cityscapes Attributes Recognition API This is the official api to download and fetch attributes annotations for Cityscapes Dataset. Content I
Efficient training of deep recommenders on cloud.
HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.
Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments
Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW
Official implementation of the paper Momentum Capsule Networks (MoCapsNet)
Momentum Capsule Network Official implementation of the paper Momentum Capsule Networks (MoCapsNet). Abstract Capsule networks are a class of neural n
Faune proche - Retrieval of Faune-France data near a google maps location
faune_proche Récupération des données de Faune-France près d'un lieu google maps
Global Rhythm Style Transfer Without Text Transcriptions
Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo
Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images
Deep Multi-Magnification Network This repository provides training and inference codes for Deep Multi-Magnification Network published here. Deep Multi
Official implementation of Self-supervised Image-to-text and Text-to-image Synthesis
Self-supervised Image-to-text and Text-to-image Synthesis This is the official implementation of Self-supervised Image-to-text and Text-to-image Synth
Code for KHGT model, AAAI2021
KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API
FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.
An unofficial PyTorch implementation of a federated learning algorithm, FedAvg.
Federated Averaging (FedAvg) in PyTorch An unofficial implementation of FederatedAveraging (or FedAvg) algorithm proposed in the paper Communication-E
The MLOps platform for innovators 🚀
DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training datas
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning
TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI
Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.
Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)
DSIG Deep Structured Instance Graph for Distilling Object Detectors Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia. [pdf] [slide]
Exe-to-xlsm - Simple script to create VBscript of exe and inject to xlsm
🎁 Exe To Office Executable file injection to Office documents: .xlsm, .docm, .p
Implementation for the paper 'YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs'
YOLO-ReT This is the original implementation of the paper: YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs. Prakhar Ganesh, Ya
PyTorch implementation for 3D human pose estimation
Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:
This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.
This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.