3D detection and tracking viewer (visualization) for kitti & waymo dataset

Overview

3D Detection & Tracking Viewer

This project was developed for view 3D object detection and tracking results. It supports rendering 3D bounding boxes as car models and rendering boxes on images.

Features

  • Rendering boxes as cars
  • Captioning box ids(infos) in 3D scene
  • Projecting 3D box or points on 2D image

Design pattern

This code includes two parts, one for data loading, other one for visualization of 3D detection and tracking results. The overall framework of design is as shown below:

Prepare data

  • Kitti detection dataset
# For Kitti Detection Dataset         
└── kitti_detection
       ├── testing 
       |      ├──calib
       |      ├──image_2
       |      ├──label_2
       |      └──velodyne      
       └── training
              ├──calib
              ├──image_2
              ├──label_2
              └──velodyne 
  • Kitti tracking dataset
# For Kitti Tracking Dataset         
└── kitti_tracking
       ├── testing 
       |      ├──calib
       |      |    ├──0000.txt
       |      |    ├──....txt
       |      |    └──0028.txt
       |      ├──image_02
       |      |    ├──0000
       |      |    ├──....
       |      |    └──0028
       |      ├──label_02
       |      |    ├──0000.txt
       |      |    ├──....txt
       |      |    └──0028.txt
       |      └──velodyne
       |           ├──0000
       |           ├──....
       |           └──0028      
       └── training # the structure is same as testing set
              ├──calib
              ├──image_02
              ├──label_02
              └──velodyne 
  • Waymo dataset

Please refer to the OpenPCDet for Waymo dataset organization.

Requirements

python3
numpy
vedo
vtk
opencv
matplotlib

Usage

1. Set boxes type & viewer background color

Currently this code supports Kitti (h,w,l,x,y,z,yaw) and Waymo OpenPCDet (x,y,z,l,w,h,yaw) box type. You can set the box type and background color when initializing a viewer as

from viewer.viewer import Viewer

vi = Viewer(box_type="Kitti",bg = (255,255,255))

2. Set objects color map

You can set the objects color map for view tracking results, same as matplotlab.pypot color map. The common used color maps are "rainbow", "viridis","brg","gnuplot","hsv" and etc.

vi.set_ob_color_map('rainbow')

3. Add colorized point clouds to 3D scene

The viewer receive a set of points, it must be a array with shape (N,3). If you want to view the scatter filed, you should to set the 'scatter_filed' with a shape (N,), and set the 'color_map_name' to specify the colors. If the 'scatter_filed' is None, the points will show in color of 'color' arg.

vi.add_points(points[:,0:3],
               radius = 2,
               color = (150,150,150),
               scatter_filed=points[:,2],
               alpha=1,
               del_after_show='True',
               add_to_3D_scene = True,
               add_to_2D_scene = True,
               color_map_name = "viridis")

4. Add boxes or cars to 3D scene

The viewer receive a set of boxes, it must be a array with shape (N,7). You can set the boxes to meshes or lines only, you also can set the line width, conner points. Besides, you can provide a set of IDs(int) to colorize the boxes, and put a set of additional infos to caption the boxes. Note that, the color will set to the color of "color" arg if the ids is None.

vi.add_3D_boxes(boxes=boxes[:,0:7],
                 ids=ids,
                 box_info=infos,
                 color="blue",
                 add_to_3D_scene=True,
                 mesh_alpha = 0.3,
                 show_corner_spheres = True,
                 corner_spheres_alpha = 1,
                 corner_spheres_radius=0.1,
                 show_heading = True,
                 heading_scale = 1,
                 show_lines = True,
                 line_width = 2,
                 line_alpha = 1,
                 show_ids = True,
                 show_box_info=True,
                 del_after_show=True,
                 add_to_2D_scene=True,
                 caption_size=(0.05,0.05)
                 )

You can also render the boxes as cars, the input format is same as boxes.

vi.add_3D_cars(boxes=boxes[:,0:7],
                 ids=ids,
                 box_info=infos,
                 color="blue",
                 mesh_alpha = 1,
                 show_ids = True,
                 show_box_info=True,
                 del_after_show=True,
                 car_model_path="viewer/car.obj",
                 caption_size = (0.1, 0.1)
                )

5. View boxes or points on image

To view the 3D box and points on image, firstly should set the camera intrinsic, extrinsic mat, and put a image. Besides, when adding the boxes and points, the 'add_to_2D_scene' should be set to True.

vi.add_image(image)
vi.set_extrinsic_mat(V2C)
vi.set_intrinsic_mat(P2)

6. Show 2D and 3D results

To show a single frame, you can directly run vi.show_2D(), vi.show_3D(). The visualization window will not close until you press the "Enter" key. Please zoom out the 3D scene by scrolling the middle mouse button backward, and then you can see the point cloud in this window. You can change the viewing angle by dragging the mouse within the visualization window.

To show multiple frames, you can use the for loop, and press the "Enter" key to view a sequence data.

for i in range(len(dataset)):
    V2C, P2, image, boxes = dataset[i]
    vi.add_3D_boxes(boxes)
    vi.add_image(image)
    vi.set_extrinsic_mat(V2C)
    vi.set_intrinsic_mat(P2)
    vi.show_2D()
    vi.show_3D()
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 19, 2021
Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechanism

Period-alternatives-of-Softmax Experimental Demo for our paper 'Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechani

slwang9353 0 Sep 06, 2021
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
Six - a Python 2 and 3 compatibility library

Six is a Python 2 and 3 compatibility library. It provides utility functions for smoothing over the differences between the Python versions with the g

Benjamin Peterson 919 Dec 28, 2022
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations This repo contains the Pytorch implementation of our paper: Revisit

Wouter Van Gansbeke 80 Nov 20, 2022
This is the official implementation of our proposed SwinMR

SwinMR This is the official implementation of our proposed SwinMR: Swin Transformer for Fast MRI Please cite: @article{huang2022swin, title={Swi

A Yang Lab (led by Dr Guang Yang) 27 Nov 17, 2022
Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically

NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh

Xavier Petit 6 Aug 18, 2022
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Razvan Valentin Marinescu 51 Nov 23, 2022
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
An implementation of the proximal policy optimization algorithm

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
PyTorch implementation of saliency map-aided GAN for Auto-demosaic+denosing

Saiency Map-aided GAN for RAW2RGB Mapping The PyTorch implementations and guideline for Saiency Map-aided GAN for RAW2RGB Mapping. 1 Implementations B

Yuzhi ZHAO 20 Oct 24, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
The versatile ocean simulator, in pure Python, powered by JAX.

Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros

TeamOcean 245 Dec 20, 2022
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

Clément Pinard 361 Dec 12, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022