Winners of DrivenData's Overhead Geopose Challenge

Overview



Banner Image

Images shown are from the public Urban Semantic 3D Dataset, provided courtesy of DigitalGlobe

Goal of the Competition

Overhead satellite imagery provides critical, time-sensitive information for use in arenas such as disaster response, navigation, and security. Most current methods for using aerial imagery assume images are taken from directly overhead, known as near-nadir. However, the first images available are often taken from an angle — they are oblique. Effects from these camera orientations complicate useful tasks such as change detection, vision-aided navigation, and map alignment.

In this challenge, participants made satellite imagery taken from a significant angle more useful for time-sensitive applications such as disaster and emergency response

What's in This Repository

This repository contains code from winning competitors in the Overhead Geopose Challenge.

Winning code for other DrivenData competitions is available in the competition-winners repository.

Winning Submissions

Prediction Contest

All of the models below build on the solution provided in the benchmark blog post: Overhead Geopose Challenge - Benchmark. Additional solution details can be found in the reports folder inside the directory for each submission.

The weights for each winning model can be downloaded from the National Geospatial-Intelligence Agency's (NGA's) DataPort page.

Place Team or User Public Score Private Score Summary of Model
1 selim_sef 0.902184 0.902459 An EfficientNet V2 L encoder is used instead of the Resnet34 encoder because it has a huge capacity and is less prone to overfitting. The decoder is a UNet with more filters and additional convolution blocks for better handling of fine-grained details. MSE loss would produce imbalance for different cities, depending on building heights. The model is trained with an R2 loss for AGL/MAG outputs, which reflects the final competition metric and is more robust to noisy training data.
2 bloodaxe 0.889955 0.891393 I’ve trained a bunch of UNet-like models and averaged their predictions. Sounds simple, yet I used quite heavy encoders (B6 & B7) and custom-made decoders to produce very accurate height map predictions at original resolution. Another crucial part of the solution was extensive custom data augmentation for height, orientation, scale, GSD, and image RGB values.
3 o__@ 0.882882 0.882801 I ensembled the VFlow-UNet model using a large input resolution and a large backbone without downsampling. Better results were obtained when the model was trained on all images from the training set. The test set contains images of the same location as the images in the training set. This overlap was identified by image matching to improve the prediction results.
4 kbrodt 0.872775 0.873057 The model uses a UNet architecture with various encoders (efficientnet-b{6,7} and senet154) and has only one above-ground level (AGL) head and two heads in the bottleneck for scale and angle. The features are a random 512x512 crop of an aerial image, the city's one hot encoding, and ground sample distance (GSD). The model is trained with mean squared error (MSE) loss function for all targets (AGL, scale, angle) using AdamW optimizer with 1e-4 learning rate.

Model Write-up Bonus

Prediction rank Team or User Public Score Private Score Summary of Model
2 bloodaxe 0.889955 0.891393 See the "Prediction Contest" section above
5 chuchu 0.856847 0.855636 We conducted an empirical upper bound analysis, which suggested that the main errors are from height prediction and the rest are from angle prediction. To overcome the bottlenecks we proposed HR-VFLOW, which takes HRNet as backbone and adopts simple multi-scale fusion as multi-task decoders to predict height, magnitude, angle, and scale simultaneously. To handle the height variance, we first pretrained the model on all four cities and then transferred the pretrained model to each specific city for better city-wise performance.
7 vecxoz 0.852948 0.851828 First, I implemented training with automatic mixed precision in order to speed up training and facilitate experiments with the large architectures. Second, I implemented 7 popular decoder architectures and conducted extensive preliminary research of different combinations of encoders and decoders. For the most promising combinations I ran long training for at least 200 epochs to study best possible scores and training dynamics. Third, I implemented an ensemble using weighted average for height and scale target and circular average for angle target.

Approved for public release, 21-943

Owner
DrivenData
Data science competitions for social good.
DrivenData
Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Invariant Causal Imitation Learning for Generalizable Policies Ioana Bica, Daniel Jarrett, Mihaela van der Schaar Neural Information Processing System

Ioana Bica 17 Dec 01, 2022
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might

Matthias Plappert 14 Dec 06, 2022
PyTorch implementation of saliency map-aided GAN for Auto-demosaic+denosing

Saiency Map-aided GAN for RAW2RGB Mapping The PyTorch implementations and guideline for Saiency Map-aided GAN for RAW2RGB Mapping. 1 Implementations B

Yuzhi ZHAO 20 Oct 24, 2022
Pca-on-genotypes - Mini bioinformatics project - PCA on genotypes

Mini bioinformatics project: PCA on genotypes This repo contains the code from t

Maria Nattestad 8 Dec 04, 2022
Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research

Megaverse Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research. The efficient design of the engine enables ph

Aleksei Petrenko 191 Dec 23, 2022
Implementing a simplified copy of Shazam application from scratch using MinHashing and LSH.

Building Shazam from scratch In this repository we tried to implement a simplified copy of the Shazam application able to tell you the name of a song

Arturo Ghinassi 0 Nov 17, 2022
Python Single Object Tracking Evaluation

pysot-toolkit The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including VOT2016 VOT2018 VOT2018-LT OT

348 Dec 22, 2022
Code repo for EMNLP21 paper "Zero-Shot Information Extraction as a Unified Text-to-Triple Translation"

Zero-Shot Information Extraction as a Unified Text-to-Triple Translation Source code repo for paper Zero-Shot Information Extraction as a Unified Text

cgraywang 88 Dec 31, 2022
Multiwavelets-based operator model

Multiwavelet model for Operator maps Gaurav Gupta, Xiongye Xiao, and Paul Bogdan Multiwavelet-based Operator Learning for Differential Equations In Ne

Gaurav 33 Dec 04, 2022
Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".

SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation Source code for the paper "SimReg: Regression as a Simple Yet E

9 Oct 15, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
Learning the Beauty in Songs: Neural Singing Voice Beautifier; ACL 2022 (Main conference); Official code

Learning the Beauty in Songs: Neural Singing Voice Beautifier Jinglin Liu, Chengxi Li, Yi Ren, Zhiying Zhu, Zhou Zhao Zhejiang University ACL 2022 Mai

Jinglin Liu 257 Dec 30, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
A PyTorch implementation of a Factorization Machine module in cython.

fmpytorch A library for factorization machines in pytorch. A factorization machine is like a linear model, except multiplicative interaction terms bet

Jack Hessel 167 Jul 06, 2022
an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

3d-ken-burns This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates

Simon Niklaus 1.4k Dec 28, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Jiaxi Jiang 282 Jan 02, 2023
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Sayom Shakib 4 Nov 03, 2022
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees" Installa

0 Oct 13, 2021