RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

Overview

RMNet: Equivalently Removing Residual Connection from Networks

This repository is the official implementation of "RMNet: Equivalently Removing Residual Connection from Networks".

Requirements

To install requirements:

pip install torch
pip install torchvision

Training

To train the models in the paper, run this command:

python train.py -a rmrep_69 --dist-url 'tcp://127.0.0.1:23333' --dist-backend 'nccl' --multiprocessing-distributed --world-size 1 --rank 0 --workers 32 [imagenet-folder with train and val folders]

Our Pre-trained Models

You can download pretrained models here:

Evaluation

To evaluate our pre-trained models trained on ImageNet, run:

python train.py -a rmrep_69 -e checkpoint/rmrep_69.pth.tar [imagenet-folder with train and val folders]

Results

Our model achieves the following performance on :

Help RepVGG achieve better performance even when the depth is large

Arch Top-1 Accuracy(%) Top-5 Accuracy(%) Train FLOPs(G) Test FLOPs(M)
RepVGG-21 72.508 90.840 2.4 2.1
RepVGG-21(RM 0.25) 72.590 90.924 2.1 2.1
RepVGG-37 74.408 91.900 4.4 4.0
RepVGG-37(RM 0.25) 74.478 91.892 3.9 4.0
RepVGG-69 74.526 92.182 8.6 7.7
RepVGG-69(RM 0.5) 75.088 92.144 6.5 7.7
RepVGG-133 70.912 89.788 16.8 15.1
RepVGG-133(RM 0.75) 74.560 92.000 10.6 15.1

Image Classification on ImageNet

Model name Top 1 Accuracy(%) Top 5 Accuracy(%)
RMNeXt 41x5_16 78.498 94.086
RMNeXt 50x5_32 79.076 94.444
RMNeXt 50x6_32 79.57 94.644
RMNeXt 101x6_16 80.07 94.918
RMNeXt 152x6_32 80.356 80.356

Citation

If you find this code useful, please cite the following paper:

@misc{meng2021rmnet,
      title={RMNet: Equivalently Removing Residual Connection from Networks}, 
      author={Fanxu Meng and Hao Cheng and Jiaxin Zhuang and Ke Li and Xing Sun},
      year={2021},
      eprint={2111.00687},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Contributing

Our code is based on RepVGG

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

1 Jan 16, 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
(CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

ClassSR (CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic Paper Authors: Xiangtao Kong, Hengyuan

Xiangtao Kong 308 Jan 05, 2023
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Jake Tae 5 Jan 27, 2022
SMPL-X: A new joint 3D model of the human body, face and hands together

SMPL-X: A new joint 3D model of the human body, face and hands together [Paper Page] [Paper] [Supp. Mat.] Table of Contents License Description News I

Vassilis Choutas 1k Jan 09, 2023
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
Image Captioning on google cloud platform based on iot

Image-Captioning-on-google-cloud-platform-based-on-iot - Image Captioning on google cloud platform based on iot

Shweta_kumawat 1 Jan 20, 2022
MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Update (20 Jan 2020): MODALS on text data is avialable MODALS MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space Table of Conte

38 Dec 15, 2022
Medical Insurance Cost Prediction using Machine earning

Medical-Insurance-Cost-Prediction-using-Machine-learning - Here in this project, I will use regression analysis to predict medical insurance cost for people in different regions, and based on several

1 Dec 27, 2021
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals This repo contains the Pytorch implementation of our paper: Unsupervised Seman

Wouter Van Gansbeke 335 Dec 28, 2022
Code for Towards Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games

Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games How to run our algorithm? Create the new environment using: conda

MARL @ SJTU 8 Dec 27, 2022
Omniscient Video Super-Resolution

Omniscient Video Super-Resolution This is the official code of OVSR (Omniscient Video Super-Resolution, ICCV 2021). This work is based on PFNL. Datase

36 Oct 27, 2022
Using OpenAI's CLIP to upscale and enhance images

CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo

Tripp Lyons 5 Jun 14, 2022
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022
Half Instance Normalization Network for Image Restoration

HINet Half Instance Normalization Network for Image Restoration, based on https://github.com/megvii-model/HINet. Dependencies NumPy PyTorch, preferabl

Holy Wu 4 Jun 06, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
A simple and extensible library to create Bayesian Neural Network layers on PyTorch.

Blitz - Bayesian Layers in Torch Zoo BLiTZ is a simple and extensible library to create Bayesian Neural Network Layers (based on whats proposed in Wei

Pi Esposito 722 Jan 08, 2023
TF Image Segmentation: Image Segmentation framework

TF Image Segmentation: Image Segmentation framework The aim of the TF Image Segmentation framework is to provide/provide a simplified way for: Convert

Daniil Pakhomov 546 Dec 17, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Jiaxi Jiang 282 Jan 02, 2023