Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)

Overview

Stratified Transformer for 3D Point Cloud Segmentation

Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia

This is the official PyTorch implementation of our paper Stratified Transformer for 3D Point Cloud Segmentation that has been accepted to CVPR 2022. [arXiv]

Highlight

  1. Our method (Stratified Transformer) achieves the state-of-the-art performance on 3D point cloud semantic segmentation on both S3DIS and ScanNetv2 datasets. It is the first time for a point-based method to outperform the voxel-based ones, such as SparseConvNet and MinkowskiNet;
  2. Stratified Transformer is point-based, and constructed by Transformer with standard multi-head self-attention, enjoying large receptive field, robust generalization ability as well as competitive performance;
  3. This repository develops a memory-efficient implementation to combat the issue of variant-length tokens with several CUDA kernels, avoiding unnecessary momery occupation of vacant tokens. We also use shared memory for further acceleration.

Get Started

Environment

Install dependencies (we recommend using conda and pytorch>=1.8.0 for quick installation, but 1.6.0+ should work with this repo)

# install torch_points3d

# If you use conda and pytorch>=1.8.0, (this enables quick installation)
conda install pytorch-cluster -c pyg
conda install pytorch-sparse -c pyg
conda install pyg -c pyg
pip install torch_points3d

# Otherwise,
pip install torch_points3d

Install other dependencies

pip install tensorboard timm termcolor tensorboardX

If you meet issues with the above commands, you can also directly install the environment via pip install -r requirements.txt.

Make sure you have installed gcc and cuda, and nvcc can work (Note that if you install cuda by conda, it won't provide nvcc and you should install cuda manually.). Then, compile and install pointops2 as follows. (We have tested on gcc==7.5.0 and cuda==10.1)

cd lib/pointops2
python3 setup.py install

Datasets Preparation

S3DIS

Please refer to https://github.com/yanx27/Pointnet_Pointnet2_pytorch for S3DIS preprocessing. Then modify the data_root entry in the .yaml configuration file.

ScanNetv2

Please refer to https://github.com/dvlab-research/PointGroup for the ScanNetv2 preprocessing. Then change the data_root entry in the .yaml configuration file accordingly.

Training

S3DIS

  • Stratified Transformer
python3 train.py --config config/s3dis/s3dis_stratified_transformer.yaml
  • 3DSwin Transformer (The vanilla version shown in our paper)
python3 train.py --config config/s3dis/s3dis_swin3d_transformer.yaml

ScanNetv2

  • Stratified Transformer
python3 train.py --config config/scannetv2/scannetv2_stratified_transformer.yaml
  • 3DSwin Transformer (The vanilla version shown in our paper)
python3 train.py --config config/scannetv2/scannetv2_swin3d_transformer.yaml

Note: It is normal to see the the results on S3DIS fluctuate between -0.5% and +0.5% mIoU maybe because the size of S3DIS is relatively small, while the results on ScanNetv2 are relatively stable.

Testing

For testing, first change the model_path, save_folder and data_root_val (if applicable) accordingly. Then, run the following command.

python3 test.py --config [YOUR_CONFIG_PATH]

Pre-trained Models

For your convenience, you can download the pre-trained models and training/testing logs from Here.

Citation

If you find this project useful, please consider citing:

@inproceedings{lai2022stratified,
  title     = {Stratified Transformer for 3D Point Cloud Segmentation},
  author    = {Xin Lai, Jianhui Liu, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia},
  booktitle = {CVPR},
  year      = {2022}
}
Owner
DV Lab
Deep Vision Lab
DV Lab
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr

HUAWEI Noah's Ark Lab 3k Jan 08, 2023
Retrieval.pytorch - The code we used in [2020 DIGIX]

Retrieval.pytorch - The code we used in [2020 DIGIX]

Guo-Hua Wang 2 Feb 07, 2022
Torchyolo - Yolov3 ve Yolov4 modellerin Pytorch uygulamasıdır

TORCHYOLO : Yolo Modellerin Pytorch Uygulaması Yapılacaklar: Yolov3 model.py ve

Kadir Nar 3 Aug 22, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 05, 2023
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
AttGAN: Facial Attribute Editing by Only Changing What You Want (IEEE TIP 2019)

News 11 Jan 2020: We clean up the code to make it more readable! The old version is here: v1. AttGAN TIP Nov. 2019, arXiv Nov. 2017 TensorFlow impleme

Zhenliang He 568 Dec 14, 2022
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and

lan.nguyen2k 77 Jan 03, 2023
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
Stitch it in Time: GAN-Based Facial Editing of Real Videos

STIT - Stitch it in Time [Project Page] Stitch it in Time: GAN-Based Facial Edit

1.1k Jan 04, 2023
Telegram chatbot created with deep learning model (LSTM) and telebot library.

Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very

1 Jan 04, 2022
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
A simple library that implements CLIP guided loss in PyTorch.

pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr

Sergei Belousov 74 Dec 26, 2022
Used to record WKU's utility bills on a regular basis.

WKU水电费小助手 一个用于定期记录WKU水电费的脚本 Looking for English Readme? 背景 由于WKU校园内的水电账单系统时常存在扣费延迟的现象,而补扣的费用缺乏令人信服的证明。不少学生为费用摸不着头脑,但也没有申诉的依据。为了更好地掌握水电费使用情况,留下一手证据,我开源

2 Jul 21, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Official implementation of NeurIPS'2021 paper TransformerFusion

TransformerFusion: Monocular RGB Scene Reconstruction using Transformers Project Page | Paper | Video TransformerFusion: Monocular RGB Scene Reconstru

Aljaz Bozic 118 Dec 25, 2022
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

1.8k Dec 28, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022