Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)

Overview

Stratified Transformer for 3D Point Cloud Segmentation

Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia

This is the official PyTorch implementation of our paper Stratified Transformer for 3D Point Cloud Segmentation that has been accepted to CVPR 2022. [arXiv]

Highlight

  1. Our method (Stratified Transformer) achieves the state-of-the-art performance on 3D point cloud semantic segmentation on both S3DIS and ScanNetv2 datasets. It is the first time for a point-based method to outperform the voxel-based ones, such as SparseConvNet and MinkowskiNet;
  2. Stratified Transformer is point-based, and constructed by Transformer with standard multi-head self-attention, enjoying large receptive field, robust generalization ability as well as competitive performance;
  3. This repository develops a memory-efficient implementation to combat the issue of variant-length tokens with several CUDA kernels, avoiding unnecessary momery occupation of vacant tokens. We also use shared memory for further acceleration.

Get Started

Environment

Install dependencies (we recommend using conda and pytorch>=1.8.0 for quick installation, but 1.6.0+ should work with this repo)

# install torch_points3d

# If you use conda and pytorch>=1.8.0, (this enables quick installation)
conda install pytorch-cluster -c pyg
conda install pytorch-sparse -c pyg
conda install pyg -c pyg
pip install torch_points3d

# Otherwise,
pip install torch_points3d

Install other dependencies

pip install tensorboard timm termcolor tensorboardX

If you meet issues with the above commands, you can also directly install the environment via pip install -r requirements.txt.

Make sure you have installed gcc and cuda, and nvcc can work (Note that if you install cuda by conda, it won't provide nvcc and you should install cuda manually.). Then, compile and install pointops2 as follows. (We have tested on gcc==7.5.0 and cuda==10.1)

cd lib/pointops2
python3 setup.py install

Datasets Preparation

S3DIS

Please refer to https://github.com/yanx27/Pointnet_Pointnet2_pytorch for S3DIS preprocessing. Then modify the data_root entry in the .yaml configuration file.

ScanNetv2

Please refer to https://github.com/dvlab-research/PointGroup for the ScanNetv2 preprocessing. Then change the data_root entry in the .yaml configuration file accordingly.

Training

S3DIS

  • Stratified Transformer
python3 train.py --config config/s3dis/s3dis_stratified_transformer.yaml
  • 3DSwin Transformer (The vanilla version shown in our paper)
python3 train.py --config config/s3dis/s3dis_swin3d_transformer.yaml

ScanNetv2

  • Stratified Transformer
python3 train.py --config config/scannetv2/scannetv2_stratified_transformer.yaml
  • 3DSwin Transformer (The vanilla version shown in our paper)
python3 train.py --config config/scannetv2/scannetv2_swin3d_transformer.yaml

Note: It is normal to see the the results on S3DIS fluctuate between -0.5% and +0.5% mIoU maybe because the size of S3DIS is relatively small, while the results on ScanNetv2 are relatively stable.

Testing

For testing, first change the model_path, save_folder and data_root_val (if applicable) accordingly. Then, run the following command.

python3 test.py --config [YOUR_CONFIG_PATH]

Pre-trained Models

For your convenience, you can download the pre-trained models and training/testing logs from Here.

Citation

If you find this project useful, please consider citing:

@inproceedings{lai2022stratified,
  title     = {Stratified Transformer for 3D Point Cloud Segmentation},
  author    = {Xin Lai, Jianhui Liu, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia},
  booktitle = {CVPR},
  year      = {2022}
}
Owner
DV Lab
Deep Vision Lab
DV Lab
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Benchmarking nearest neighbors Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far t

Erik Bernhardsson 3.2k Jan 03, 2023
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose Paper | Website | Data A-NeRF: Articulated Neural Radiance F

Shih-Yang Su 172 Dec 22, 2022
Example-custom-ml-block-keras - Custom Keras ML block example for Edge Impulse

Custom Keras ML block example for Edge Impulse This repository is an example on

Edge Impulse 8 Nov 02, 2022
Gym environment for FLIPIT: The Game of "Stealthy Takeover"

gym-flipit Gym environment for FLIPIT: The Game of "Stealthy Takeover" invented by Marten van Dijk, Ari Juels, Alina Oprea, and Ronald L. Rivest. Desi

Lisa Oakley 2 Dec 15, 2021
This is Unofficial Repo. Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection (CVPR 2021)

Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection This is a PyTorch implementation of the LipForensics paper. This is an U

Minha Kim 2 May 11, 2022
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
Source code related to the article submitted to the International Conference on Computational Science ICCS 2022 in London

POTHER: Patch-Voted Deep Learning-based Chest X-ray Bias Analysis for COVID-19 Detection Source code related to the article submitted to the Internati

Tomasz Szczepański 1 Apr 29, 2022
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci

0 Oct 25, 2021
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
Implementation of Uformer, Attention-based Unet, in Pytorch

Uformer - Pytorch Implementation of Uformer, Attention-based Unet, in Pytorch. It will only offer the concat-cross-skip connection. This repository wi

Phil Wang 72 Dec 19, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Kingdrone 174 Dec 22, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
This repo tries to recognize faces in the dataset you created

YÜZ TANIMA SİSTEMİ Bu repo oluşturacağınız yüz verisetlerini tanımaya çalışan ma

Mehdi KOŞACA 2 Dec 30, 2021
The official repository for Deep Image Matting with Flexible Guidance Input

FGI-Matting The official repository for Deep Image Matting with Flexible Guidance Input. Paper: https://arxiv.org/abs/2110.10898 Requirements easydict

Hang Cheng 51 Nov 10, 2022
A Moonraker plug-in for real-time compensation of frame thermal expansion

Frame Expansion Compensation A Moonraker plug-in for real-time compensation of frame thermal expansion. Installation Credit to protoloft, from whom I

58 Jan 02, 2023