Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations

Related tags

Deep LearningNANSY
Overview

NANSY:

Unofficial Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations

Notice

Papers' Demo

Check Authors' Demo page

Sample-Only Demo Page

Check Demo Page

Concerns

Among the various controllabilities, it is rather obvious that the voice conversion technique can be misused and potentially harm other people. 
More concretely, there are possible scenarios where it is being used by random unidentified users and contributing to spreading fake news. 
In addition, it can raise concerns about biometric security systems based on speech. 
To mitigate such issues, the proposed system should not be released without a consent so that it cannot be easily used by random users with malicious intentions. 
That being said, there is still a potential for this technology to be used by unidentified users. 
As a more solid solution, therefore, we believe a detection system that can discriminate between fake and real speech should be developed.

We provide both pretrained checkpoint of Discriminator network and inference code for this concern.

Environment

Requirements

pip install -r requirements.txt

Docker

Image

If using cu113 compatible environment, use Dockerfile
If using cu102 compatible environment, use Dockerfile-cu102

docker build -f Dockerfile -t nansy:v0.0 .

Container

After building appropriate image, use docker-compose or docker to run a container.
You may want to modify docker-compose.yml or docker_run_script.sh

docker-compose -f docker-compose.yml run --service-ports --name CONTAINER_NAME nansy_container bash
or
bash docker_run_script.sh

Pretrained hifi-gan

Download pretrained hifi-gan config and checkpoint
from hifi-gan to ./configs/hifi-gan/UNIVERSAL_V1

Pretrained Checkpoints

TODO

Datasets

Datasets used when training are:

Custom Datasets

Write your own code!
If inheriting datasets.custom.CustomDataset, self.data should be as:

self.data: list
self.data[i]: dict must have:
    'wav_path_22k': str = path_to_22k_wav_file
    'wav_path_16k': str = (optional) path_to_16k_wav_file
    'speaker_id': str = speaker_id

Train

If you prefer pytorch-lightning, python train.py -g 1

parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="configs/train_nansy.yaml")
parser.add_argument('-g', '--gpus', type=str,
                    help="number of gpus to use")
parser.add_argument('-p', '--resume_checkpoint_path', type=str, default=None,
                    help="path of checkpoint for resuming")
args = parser.parse_args()
return args

else python train_torch.py # TODO, not completely supported now

Configs Description

Edit configs/train_nansy.yaml.

Dataset settings

  • Adjust datasets.*.datasets list.
    • Paths to dataset config files should be in the list
datasets:
  train:
    class: datasets.base.MultiDataset
    datasets: [
      # 'configs/datasets/css10.yaml',
        'configs/datasets/vctk.yaml',
        'configs/datasets/libritts360.yaml',
    ]

    mode: train
    batch_size: 32 # Depends on GPU Memory, Original paper used 32
    shuffle: True
    num_workers: 16 # Depends on available CPU cores

  eval:
    class: datasets.base.MultiDataset
    datasets: [
      # 'configs/datasets/css10.yaml',
        'configs/datasets/vctk.yaml',
        'configs/datasets/libritts360.yaml',
    ]

    mode: eval
    batch_size: 32
    shuffle: False
    num_workers: 4
Dataset Config

Dataset configs are at ./configs/datasets/.
You might want to replace /raid/vision/dhchoi/data to YOUR_PATH_DO_DATA, especially at path section.

class: datasets.vctk.VCTKDataset # implemented Dataset class name
load:
  audio: 'configs/audio/22k.yaml'

path:
  root: /raid/vision/dhchoi/data/
  wav22: /raid/vision/dhchoi/data/VCTK-Corpus/wav22
  wav16: /raid/vision/dhchoi/data/VCTK-Corpus/wav16
  txt: /raid/vision/dhchoi/data/VCTK-Corpus/txt
  timestamp: ./vctk-silence-labels/vctk-silences.0.92.txt

  configs:
    train: /raid/vision/dhchoi/data/VCTK-Corpus/vctk_22k_train.txt
    eval: /raid/vision/dhchoi/data/VCTK-Corpus/vctk_22k_val.txt
    test: /raid/vision/dhchoi/data/VCTK-Corpus/vctk_22k_test.txt

Model Settings

  • Comment out or Delete Discriminator section if no Discriminator needed.
  • Adjust optimizer class, lr and betas if needed.
models:
  Analysis:
    class: models.analysis.Analysis

    optim:
      class: torch.optim.Adam
      kwargs:
        lr: 1e-4
        betas: [ 0.5, 0.9 ]

  Synthesis:
    class: models.synthesis.Synthesis

    optim:
      class: torch.optim.Adam
      kwargs:
        lr: 1e-4
        betas: [ 0.5, 0.9 ]

  Discriminator:
    class: models.synthesis.Discriminator

    optim:
      class: torch.optim.Adam
      kwargs:
        lr: 1e-4
        betas: [ 0.5, 0.9 ]

Logging & Pytorch-lightning settings

For pytorch-lightning configs in section pl, check official docs

pl:
  checkpoint:
    callback:
      save_top_k: -1
      monitor: "train/backward"
      verbose: True
      every_n_epochs: 1 # epochs

  trainer:
    gradient_clip_val: 0 # don't clip (default value)
    max_epochs: 10000
    num_sanity_val_steps: 1
    fast_dev_run: False
    check_val_every_n_epoch: 1
    progress_bar_refresh_rate: 1
    accelerator: "ddp"
    benchmark: True

logging:
  log_dir: /raid/vision/dhchoi/log/nansy/ # PATH TO SAVE TENSORBOARD LOG FILES
  seed: "31" # Experiment Seed
  freq: 100 # Logging frequency (step)
  device: cuda # Training Device (used only in train_torch.py) 
  nepochs: 1000 # Max epochs to run

  save_files: [ # Files To save for each experiment
      './*.py',
      './*.sh',
      'configs/*.*',
      'datasets/*.*',
      'models/*.*',
      'utils/*.*',
  ]

Tensorboard

During training, tensorboard logger logs loss, spectrogram and audio.

tensorboard --logdir YOUR_LOG_DIR_AT_CONFIG/YOUR_SEED --bind_all

Inference

Generator

python inference.py or bash inference.sh

You may want to edit inferece.py for custom manipulation.

parser = argparse.ArgumentParser()
parser.add_argument('--path_audio_conf', type=str, default='configs/audio/22k.yaml',
                    help='')
parser.add_argument('--path_ckpt', type=str, required=True,
                    help='path to pl checkpoint')
parser.add_argument('--path_audio_source', type=str, required=True,
                    help='path to source audio file, sr=22k')
parser.add_argument('--path_audio_target', type=str, required=True,
                    help='path to target audio file, sr=16k')
parser.add_argument('--tsa_loop', type=int, default=100,
                    help='iterations for tsa')
parser.add_argument('--device', type=str, default='cuda',
                    help='')
args = parser.parse_args()
return args

Discriminator

Note that 0=gt, 1=gen

python classify.py or bash classify.sh

parser = argparse.ArgumentParser()
parser.add_argument('--path_audio_conf', type=str, default='configs/audio/22k.yaml',
                    help='')
parser.add_argument('--path_ckpt', type=str, required=True,
                    help='path to pl checkpoint')
parser.add_argument('--path_audio_gt', type=str, required=True,
                    help='path to audio with same speaker')
parser.add_argument('--path_audio_gen', type=str, required=True,
                    help='path to generated audio ')
parser.add_argument('--device', type=str, default='cuda')
args = parser.parse_args()

License

NEEDS WORK

BSD 3-Clause License.

References

  • Choi, Hyeong-Seok, et al. "Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations."

  • Baevski, Alexei, et al. "wav2vec 2.0: A framework for self-supervised learning of speech representations."

  • Desplanques, Brecht, Jenthe Thienpondt, and Kris Demuynck. "Ecapa-tdnn: Emphasized channel attention, propagation and aggregation in tdnn based speaker verification."

  • Chen, Mingjian, et al. "Adaspeech: Adaptive text to speech for custom voice."

  • Cookbook formulae for audio equalizer biquad filter coefficients

This implementation uses codes/data from following repositories:

Provided Checkpoints are trained from:

Special Thanks

MINDsLab Inc. for GPU support

Special Thanks to:

for help with Audio-domain knowledge

Owner
Dongho Choi 최동호
Dongho Choi 최동호
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

scikit-learn 52.5k Jan 08, 2023
QI-Q RoboMaster2022 CV Algorithm

QI-Q RoboMaster2022 CV Algorithm

2 Jan 10, 2022
Simple Python project using Opencv and datetime package to recognise faces and log attendance data in a csv file.

Attendance-System-based-on-Facial-recognition-Attendance-data-stored-in-csv-file- Simple Python project using Opencv and datetime package to recognise

3 Aug 09, 2022
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

Yuhan Liu 24 Nov 29, 2022
This is an official source code for implementation on Extensive Deep Temporal Point Process

Extensive Deep Temporal Point Process This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed o

Haitao Lin 8 Aug 15, 2022
Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening images

A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images 深度监督影像融合网络DSIFN用于高分辨率双时相遥感影像变化检测 Of

Chenxiao Zhang 135 Dec 19, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023
Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021)

Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021) Kranti Kumar Parida, Siddharth Srivastava, Gaurav Sharma. We address the pr

Kranti Kumar Parida 33 Jun 27, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022
Beyond imagenet attack (accepted by ICLR 2022) towards crafting adversarial examples for black-box domains.

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Contextualized Perturbation for Textual Adversarial Attack Introduction This is a PyTorch implementation of Contextualized Perturbation for Textual Ad

cookielee77 30 Jan 01, 2023
(EI 2022) Controllable Confidence-Based Image Denoising

Image Denoising with Control over Deep Network Hallucination Paper and arXiv preprint -- Our frequency-domain insights derive from SFM and the concept

Images and Visual Representation Laboratory (IVRL) at EPFL 5 Dec 18, 2022
Extremely simple and fast extreme multi-class and multi-label classifiers.

napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m

Marek Wydmuch 43 Nov 14, 2022
The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Habitat-Matterport 3D Dataset (HM3D) The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000

Meta Research 62 Dec 27, 2022
基于PaddleClas实现垃圾分类,并转换为inference格式用PaddleHub服务端部署

百度网盘链接及提取码: 链接:https://pan.baidu.com/s/1HKpgakNx1hNlOuZJuW6T1w 提取码:wylx 一个垃圾分类项目带你玩转飞桨多个产品(1) 基于PaddleClas实现垃圾分类,导出inference模型并利用PaddleHub Serving进行服务

thomas-yanxin 22 Jul 12, 2022