Vrcwatch - Supply the local time to VRChat as Avatar Parameters through OSC

Overview

English: README-EN.md

VRCWatch

VRCWatch は、VRChat 内のアバター向けに現在時刻を送信するためのプログラムです。

使い方

VRChat 起動前、もしくは起動中に run.bat を実行してください。 または VRCWatch ディレクトリをカレントディレクトリにした状態で python3 -m vrcwatch を実行してください。

// TODO: 加筆する

Avatar Parameter

このプログラムでは VRChat の OSC (OpenSound Control) 機能を利用して、 以下のパラメータを Avatar Parameter として送信します。 全てのパラメータは必ず DateTime から始まります。

  • DateTimeYear
    • 型: 整数 (int)
    • グレゴリオ暦での年数です。
    • 2022 年であれば、2022 となります。
  • DateTimeMonth
    • 型: 整数 (int)
    • グレゴリオ暦での月です。1 以上 12 以下の整数を取ります。
    • 1 月あれば、1 を、2 月であれば 2 を、12 月であれば 12 を取ります。
  • DateTimeDay
    • 型: 整数 (int)
    • 当月内での日数です。1 以上 31 以下の整数を取ります。
    • 1 月 23 日であれば 23 を、2 月 29 日であれば、29 を、11 月 30 日であれば 30 を取ります。
  • DateTimeWeekDay
    • 型: 整数 (int)
    • 1 週間内での曜日です。0 以上 6 以下の整数を取ります。
    • 月曜日は 0 を、火曜日は 1 を、水曜日は 2 を、土曜日は 5 を、日曜日は 6 を取ります。
  • DateTimeHour
    • 型: 整数 (int)
    • 1 日を 24 分割している、時 (じ) です。0 以上 23 以下の整数を取ります。
    • 午前 0 時 12 分 (0:12) であれば 0 を、午後 3 時 45 分 (15:45) であれば 15 を、午後 11 時 59 分 (23:59) であれば 23 を取ります。
  • DateTimeMinute
    • 型: 整数 (int)
    • 1 時間を 60 分割している、分です。0 以上 59 以下の整数を取ります。
    • 午前 1 時 00 分 (1:00) であれば 0 を、午後 2 時 34 分 (14:34) であれば 34 を、午後 11 時 59 分 (23:59) であれば 59 を取ります。
  • DateTimeSecond
    • 型: 整数 (int)
    • 1 分間を 60 分割している、秒です。0 以上 59 以下の整数を取ります。
    • 午前 3 時 21 分 0 秒 (3:21:00) であれば 0 を、午後 1 時 23 分 45 秒 (13:23:45) であれば 45 を、午後 11 時 59 分 59 秒 (23:59:59) であれば 59 を取ります。
  • DateTimeHourF
    • 型: 実数 (float)
    • DateTimeHour を 24 で割った、1/24 刻みの実数です。0 以上 1 未満を取ります。
    • 午前 1 時 23 分 (1:23) であれば約 0.04167 (= 1.0 / 24) を、午後 11 時 59 分 (23:59) であれば約 0.95833 (= 23.0 / 24) を取ります。
  • DateTimeMinuteF
    • 型: 実数 (float)
    • DateTimeMinute を 60 で割った、1/60 刻みの実数です。0 以上 1 未満を取ります。
    • 午前 1 時 23 分 (1:23) であれば約 0.38333 (= 23.0 / 60) を、午後 11 時 59 分 (23:59) であれば約 0.98333 (= 59.0 / 60) を取ります。
  • DateTimeSecondF
    • 型: 実数 (float)
    • DateTimeSecond を 60 で割った、1/60 刻みの実数です。0 以上 1 未満を取ります。
    • 午前 4 時 32 分 1 秒 (3:21:01) であれば約 0.01667 (= 1.0 / 60) を、午後 2 時 34 分 59 秒 (14:24:59) であれば約 0.98333 (= 59.0 / 60) を取ります。
  • DateTimeDayTime
    • 型: 実数 (float)
    • 1 日の何割だけ時間が進んだかを表す実数です。0 以上 1 未満を取ります。
    • 午前 0 時 0 分 0 秒 (0:00:00) であれば 0.0 を、午後 12 時 59 分 59 秒 (23:59:59) を約 0.99999 を取ります。

Copyright / License

Copyright (c) 2022 Kosaki Mezumona

MIT License, see LICENSE.

Owner
Kosaki Mezumona
I'm Japanese programmer. I've studied about information technology and researched the aspect-oriented programming at a university.
Kosaki Mezumona
Implementation of SETR model, Original paper: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.

SETR - Pytorch Since the original paper (Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.) has no official

zhaohu xing 112 Dec 16, 2022
Deploy a ML inference service on a budget in less than 10 lines of code.

BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end.

1.3k Dec 25, 2022
Convert weight file.pth to weight file.blob

CONVERT YOUR MODEL TO IR FORMAT INSTALLATION OpenVino Toolkit Download openvinotoolkit 2021.3 version : Link Instruction of installation : Link Pytorc

Tran Anh Tuan 3 Nov 18, 2021
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images

Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images [ICCV 2021] © Mahmood Lab - This code is made avail

Mahmood Lab @ Harvard/BWH 63 Dec 01, 2022
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
1st-in-MICCAI2020-CPM - Combined Radiology and Pathology Classification

Combined Radiology and Pathology Classification MICCAI 2020 Combined Radiology a

22 Dec 08, 2022
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Trans

Zhuang AI Group 105 Dec 06, 2022
Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
TAP: Text-Aware Pre-training for Text-VQA and Text-Caption, CVPR 2021 (Oral)

TAP: Text-Aware Pre-training TAP: Text-Aware Pre-training for Text-VQA and Text-Caption by Zhengyuan Yang, Yijuan Lu, Jianfeng Wang, Xi Yin, Dinei Flo

Microsoft 61 Nov 14, 2022
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022
The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue. How do I cite D-REX? For now, cite

Alon Albalak 6 Mar 31, 2022
Local-Global Stratified Transformer for Efficient Video Recognition

DualFormer This repo is the implementation of our manuscript entitled "Local-Global Stratified Transformer for Efficient Video Recognition". Our model

Sea AI Lab 19 Dec 07, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
The deployment framework aims to provide a simple, lightweight, fast integrated, pipelined deployment framework that ensures reliability, high concurrency and scalability of services.

savior是一个能够进行快速集成算法模块并支持高性能部署的轻量开发框架。能够帮助将团队进行快速想法验证(PoC),避免重复的去github上找模型然后复现模型;能够帮助团队将功能进行流程拆解,很方便的提高分布式执行效率;能够有效减少代码冗余,减少不必要负担。

Tao Luo 125 Dec 22, 2022
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022