Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Related tags

Deep LearningINVASE
Overview

Codebase for "INVASE: Instance-wise Variable Selection"

Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar

Paper: Jinsung Yoon, James Jordon, Mihaela van der Schaar, "IINVASE: Instance-wise Variable Selection using Neural Networks," International Conference on Learning Representations (ICLR), 2019. (https://openreview.net/forum?id=BJg_roAcK7)

This directory contains implementations of INVASE framework for the following applications.

  • Instance-wise feature selection
  • Prediction with instance-wise feature selection

To run the pipeline for training and evaluation on INVASE framwork, simply run python3 -m main_inavse.py.

Note that any model architecture can be used as the actor and critic models such as CNN. The condition for models is to have train and predict functions as its subfunctions.

Stages of the INVASE framework:

  • Generate synthetic dataset (6 synthetic datasets)
  • Train INVASE or INVASE- (without baseline)
  • Evaluate INVASE for instance-wise feature selection
  • Evaluate INVASE for prediction

Command inputs:

  • data_type: synthetic data type (syn1 to syn6)

  • train_no: the number of samples for training set

  • train_no: the number of samples for testing set

  • dim: the number of features

  • model_type: invase or invase_minus

  • model_parameters:

    • actor_h_dim: hidden state dimensions for actor
    • critic_h_dim: hidden state dimensions for critic
    • n_layer: the number of layers
    • batch_size: the number of samples in mini batch
    • iteration: the number of iterations
    • activation: activation function of models
    • learning_rate: learning rate of model training
    • lamda: hyper-parameter of INVASE

Example command

$ python3 main_invase.py 
--data_type syn1 --train_no 10000 --test_no 10000 --dim 11
--model_type invase --actor_h_dim 100 --critic_h_dim 200
--n_layer 3 --batch_size 1000 --iteration 10000
--activation relu --learning_rate 0.0001 --lamda 0.1

Outputs

  • Instance-wise feature selection performance:
    • Mean TPR
    • Std TPR
    • Mean FDR
    • Std FDR
  • Prediction performance:
    • AUC
    • APR
    • ACC
Owner
Jinsung Yoon
Research Scientist at Google Cloud AI
Jinsung Yoon
Rational Activation Functions - Replacing Padé Activation Units

Rational Activations - Learnable Rational Activation Functions First introduce as PAU in Padé Activation Units: End-to-end Learning of Activation Func

<a href=[email protected]"> 38 Nov 22, 2022
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
Use Python, OpenCV, and MediaPipe to control a keyboard with facial gestures

CheekyKeys A Face-Computer Interface CheekyKeys lets you control your keyboard using your face. View a fuller demo and more background on the project

69 Nov 09, 2022
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
Source code for 2021 ICCV paper "In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces"

In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces This is the PyTorch implementation for 2021 ICCV paper "In-the-Wild Single C

27 Dec 06, 2022
202 Jan 06, 2023
PyTorch implementation of "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory" (WACV2022)

Dataset Knowledge Transfer for Class-Incremental Learning Without Memory [Paper] [Slides] Summary Introduction Installation Reproducing results Citati

Habib Slim 5 Dec 05, 2022
A Pythonic library for Nvidia Codec.

A Pythonic library for Nvidia Codec. The project is still in active development; expect breaking changes. Why another Python library for Nvidia Codec?

Zesen Qian 12 Dec 27, 2022
T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time The first Lidar-only odometry framework with high performance based on tr

Pengwei Zhou 183 Dec 01, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

BPR Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash techni

Studio Ousia 147 Dec 07, 2022
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely

1 Mar 28, 2022
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
PenguinSpeciesPredictionML - Basic model to predict Penguin species based on beak size and sex.

Penguin Species Prediction (ML) 🐧 👨🏽‍💻 What? 💻 This project is a basic model using sklearn methods to predict Penguin species based on beak size

Tucker Paron 0 Jan 08, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Fortuitous Forgetting in Connectionist Networks

Fortuitous Forgetting in Connectionist Networks Introduction This repository includes reference code for the paper Fortuitous Forgetting in Connection

Hattie Zhou 14 Nov 26, 2022
MLPs for Vision and Langauge Modeling (Coming Soon)

MLP Architectures for Vision-and-Language Modeling: An Empirical Study MLP Architectures for Vision-and-Language Modeling: An Empirical Study (Code wi

Yixin Nie 27 May 09, 2022
This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

1 Dec 24, 2021
A set of tests for evaluating large-scale algorithms for Wasserstein-2 transport maps computation.

Continuous Wasserstein-2 Benchmark This is the official Python implementation of the NeurIPS 2021 paper Do Neural Optimal Transport Solvers Work? A Co

Alexander 22 Dec 12, 2022