Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery (ICCV 2021)

Overview

Change is Everywhere
Single-Temporal Supervised Object Change Detection
in Remote Sensing Imagery

by Zhuo Zheng, Ailong Ma, Liangpei Zhang and Yanfei Zhong

[Paper] [BibTeX]



This is an official implementation of STAR and ChangeStar in our ICCV 2021 paper Change is Everywhere: Single-Temporal Supervised Object Change Detection for High Spatial Resolution Remote Sensing Imagery.

We hope that STAR will serve as a solid baseline and help ease future research in weakly-supervised object change detection.


News

  • 2021/08/28, The code is available.
  • 2021/07/23, The code will be released soon.
  • 2021/07/23, This paper is accepted by ICCV 2021.

Features

  • Learning a good change detector from single-temporal supervision.
  • Strong baselines for bitemporal and single-temporal supervised change detection.
  • A clean codebase for weakly-supervised change detection.
  • Support both bitemporal and single-temporal supervised settings

Citation

If you use STAR or ChangeStar (FarSeg) in your research, please cite the following paper:

@inproceedings{zheng2021change,
  title={Change is Everywhere: Single-Temporal Supervised Object Change Detection for High Spatial Resolution Remote Sensing Imagery},
  author={Zheng, Zhuo and Ma, Ailong and Liangpei Zhang and Zhong, Yanfei},
  booktitle={Proceedings of the IEEE international conference on computer vision},
  pages={},
  year={2021}
}

@inproceedings{zheng2020foreground,
  title={Foreground-Aware Relation Network for Geospatial Object Segmentation in High Spatial Resolution Remote Sensing Imagery},
  author={Zheng, Zhuo and Zhong, Yanfei and Wang, Junjue and Ma, Ailong},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={4096--4105},
  year={2020}
}

Getting Started

Install EVer

pip install --upgrade git+https://github.com/Z-Zheng/ever.git

Requirements:

  • pytorch >= 1.6.0
  • python >=3.6

Prepare Dataset

  1. Download xView2 dataset (training set and tier3 set) and LEVIR-CD dataset.

  2. Create soft link

ln -s </path/to/xView2> ./xView2
ln -s </path/to/LEVIR-CD> ./LEVIR-CD

Training and Evaluation under Single-Temporal Supervision

bash ./scripts/trainxView2/r50_farseg_changemixin_symmetry.sh

Training and Evaluation under Bitemporal Supervision

bash ./scripts/bisup_levircd/r50_farseg_changemixin.sh

License

ChangeStar is released under the Apache License 2.0.

Copyright (c) Zhuo Zheng. All rights reserved.

Comments
  • Can ChangeStar be used for general CD?

    Can ChangeStar be used for general CD?

    hi,

    Thanks for the great work. I wonder, can this work be used for general change detection? i.e., multi-class not just single class.

    If yes, do you have done the experiments? Thanks!

    opened by Richardych 3
  • hello, how to add changemixin when use bitemporal supervised

    hello, how to add changemixin when use bitemporal supervised

    hello I have question about your repo:

    1. how to add changeminxin when use bitemporal supervised, i see it in your paper table 4 but i cant find in codes?
    2. could changestar use LEVIR-CD train Single-Temporal(another dataset is too big for train, i cant download it)
    3. are your bitemporal suprvised methods just use torch.cat in the final layer? sorry for ask these question,
    opened by csliuchang 3
  • ValueError: Requested crop size (512, 512) is larger than the image size (384, 384)

    ValueError: Requested crop size (512, 512) is larger than the image size (384, 384)

    Traceback (most recent call last): File "./train_sup_change.py", line 48, in blob = trainer.run(after_construct_launcher_callbacks=[register_evaluate_fn]) File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/ever/api/trainer/th_amp_ddp_trainer.py", line 117, in run test_data_loader=kw_dataloader['testdata_loader']) File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/ever/core/launcher.py", line 232, in train_by_config signal_loss_dict = self.train_iters(train_data_loader, test_data_loader=test_data_loader, **config) File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/ever/core/launcher.py", line 174, in train_iters is_master=self._master) File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/ever/core/iterator.py", line 30, in next data = next(self._iterator) File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 435, in next data = self._next_data() File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 475, in _next_data data = self._dataset_fetcher.fetch(index) # may raise StopIteration File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py", line 44, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py", line 44, in data = [self.dataset[idx] for idx in possibly_batched_index] File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/torch/utils/data/dataset.py", line 218, in getitem return self.datasets[dataset_idx][sample_idx] File "/home/yujianzhi/tem/ChangeStar-master/data/levir_cd/dataset.py", line 30, in getitem blob = self.transforms(**dict(image=imgs, mask=gt)) File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/albumentations/core/composition.py", line 191, in call data = t(force_apply=force_apply, **data) File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/albumentations/core/transforms_interface.py", line 90, in call return self.apply_with_params(params, **kwargs) File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/albumentations/core/transforms_interface.py", line 103, in apply_with_params res[key] = target_function(arg, **dict(params, **target_dependencies)) File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/albumentations/augmentations/crops/transforms.py", line 48, in apply return F.random_crop(img, self.height, self.width, h_start, w_start) File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/albumentations/augmentations/crops/functional.py", line 28, in random_crop crop_height=crop_height, crop_width=crop_width, height=height, width=width ValueError: Requested crop size (512, 512) is larger than the image size (384, 384) Traceback (most recent call last): File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/runpy.py", line 85, in _run_code exec(code, run_globals) File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/torch/distributed/launch.py", line 260, in main() File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/torch/distributed/launch.py", line 256, in main cmd=cmd) subprocess.CalledProcessError: Command '['/home/yujianzhi/anaconda3/envs/CStar/bin/python', '-u', './train_sup_change.py', '--local_rank=0', '--config_path=levircd.r50_farseg_changestar_bisup', '--model_dir=./log/bisup-LEVIRCD/r50_farseg_changestar']' returned non-zero exit status 1.

    it says: ValueError: Requested crop size (512, 512) is larger than the image size (384, 384) but my img is 512*512 exactly.

    opened by themoongodyue 3
  • How to get the bitemporal images' labels if the model is trained on LEVIR-CD dataset?

    How to get the bitemporal images' labels if the model is trained on LEVIR-CD dataset?

    Hello, I'm very interested in your work, but I encountered a problem in the process of research. If the model is trained on the LEVIR-CD dataset, how to obtain the changed labels when there are no segmentation maps for each bitemporal image in the dataset? I would appreciate it if you could solve my problems.

    opened by SONGLEI-arch 2
  • Reproduction Problem

    Reproduction Problem

    Hello author.

    Your work is great!

    But I ran into a problem while running your code.

    The performance came as shown in the picture below, but this number is much higher than the number in table1 of your paper. (IoU) Can you tell me the reason? Screen Shot 2022-01-01 at 7 44 17 PM

    All hyperparameters and data are identical.

    opened by seominseok0429 1
  • AssertionError error

    AssertionError error

    Hello, this is really great work. I have one question for you. The LEVIR-CD dataset trains well, but the xview2 dataset gives the following unknown error.

    Do you have any idea how to fix it? All processes follow the recipe exactly Screen Shot 2021-12-31 at 4 57 41 PM .

    opened by seominseok0429 1
  • RuntimeError: NCCL error in: /pytorch/torch/lib/c10d/ProcessGroupNCCL.cpp:911, unhandled system error, NCCL version 2.7.8

    RuntimeError: NCCL error in: /pytorch/torch/lib/c10d/ProcessGroupNCCL.cpp:911, unhandled system error, NCCL version 2.7.8

    i have crazy,help me please

    Traceback (most recent call last): File "./train_sup_change.py", line 48, in blob = trainer.run(after_construct_launcher_callbacks=[register_evaluate_fn]) File "/home/cy/miniconda3/envs/STAnet/lib/python3.8/site-packages/ever/api/trainer/th_amp_ddp_trainer.py", line 98, in run kwargs.update(dict(model=self.make_model())) File "/home/cy/miniconda3/envs/STAnet/lib/python3.8/site-packages/ever/api/trainer/th_amp_ddp_trainer.py", line 87, in make_model model = nn.parallel.DistributedDataParallel( File "/home/cy/miniconda3/envs/STAnet/lib/python3.8/site-packages/torch/nn/parallel/distributed.py", line 496, in init dist._verify_model_across_ranks(self.process_group, parameters) RuntimeError: NCCL error in: /pytorch/torch/lib/c10d/ProcessGroupNCCL.cpp:911, unhandled system error, NCCL version 2.7.8 ncclSystemError: System call (socket, malloc, munmap, etc) failed. ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 31335) of binary: /home/cy/miniconda3/envs/STAnet/bin/python ERROR:torch.distributed.elastic.agent.server.local_elastic_agent:[default] Worker group failed

    opened by themoongodyue 1
  • Evaluation

    Evaluation

    Excuse me, I want to know how this module behave inference after training the model. And if you can offer an link for usage of 'ever' Lib, that will be fantastic

    opened by LIUZIJING-CHN 1
  • changestar_sisup results

    changestar_sisup results

    Hi, I have trained the model under single-temporal supervision, but the F1 result is only 0.73,which is worse than the result in your paper. Is there anything wrong with my experiment, below is my training log:

    1666753326.225779.log

    After training I only test the LEVIR-CD test set.

    opened by max2857 0
  • A question about PCC

    A question about PCC

    Hello,I have a question about PCC:

    PCC is mentioned in the paper. After obtaining the classification result through the segmentation model, how to obtain the change detection result through the classification result? Is it a direct subtraction?

    opened by Hyd1999618 0
  • [Feature] support [0~255] gt

    [Feature] support [0~255] gt

    The original dataset of LEVIR-CD consists of 0 and 255.

    However, the segmentation loss of this code works only when it consists of 0 and 1.

    Therefore, I added a code to change gt's 255 to 1.

    opened by seominseok0429 1
Releases(v0.1.0)
Owner
Zhuo Zheng
CV IN RS. Ph.D. Student.
Zhuo Zheng
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
Semantic Segmentation of images using PixelLib with help of Pascalvoc dataset trained with Deeplabv3+ framework.

CARscan- Approach 1 - Segmentation of images by detecting contours. It failed because in images with elements along with cars were also getting detect

Padmanabha Banerjee 5 Jul 29, 2021
Script for getting information in discord

User-info.py Script for getting information in https://discord.com/ Instalação: apt-get update -y apt-get upgrade -y apt-get install git pkg install

Moleey 1 Dec 18, 2021
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
A curated list of neural rendering resources.

Awesome-of-Neural-Rendering A curated list of neural rendering and related resources. Please feel free to pull requests or open an issue to add papers

Zhiwei ZHANG 43 Dec 09, 2022
Balancing Principle for Unsupervised Domain Adaptation

Blancing Principle for Domain Adaptation NeurIPS 2021 Paper Abstract We address the unsolved algorithm design problem of choosing a justified regulari

Marius-Constantin Dinu 4 Dec 15, 2022
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Facebook Research 75 Dec 19, 2022
Code for the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

DU-VAE This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness" Acknowledgement

Dazhong Shen 4 Oct 19, 2022
MIMO-UNet - Official Pytorch Implementation

MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-

Sungjin Cho 248 Jan 02, 2023
QueryFuzz implements a metamorphic testing approach to test Datalog engines.

Datalog is a popular query language with applications in several domains. Like any complex piece of software, Datalog engines may contain bugs. The mo

34 Sep 10, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy

49 Jan 07, 2023
[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation This repository contains the source code for

Yun-Chun Chen 60 Nov 25, 2022
Pocsploit is a lightweight, flexible and novel open source poc verification framework

Pocsploit is a lightweight, flexible and novel open source poc verification framework

cckuailong 208 Dec 24, 2022
Style transfer, deep learning, feature transform

FastPhotoStyle License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons

NVIDIA Corporation 10.9k Jan 02, 2023
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Jan 01, 2023
Setup freqtrade/freqUI on Heroku

UNMAINTAINED - REPO MOVED TO https://github.com/p-zombie/freqtrade Creating the app git clone https://github.com/joaorafaelm/freqtrade.git && cd freqt

João 51 Aug 29, 2022
Probabilistic Programming and Statistical Inference in PyTorch

PtStat Probabilistic Programming and Statistical Inference in PyTorch. Introduction This project is being developed during my time at Cogent Labs. The

Stefano Peluchetti 109 Nov 26, 2022
Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience

Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience This repository is the official implementation of [https://www.bi

Eulerlab 6 Oct 09, 2022
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023