PAIRED in PyTorch πŸ”₯

Related tags

Deep Learningpaired
Overview

License

PAIRED

This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduced in "Emergent Complexity and Zero-Shot Transfer via Unsupervised Environment Design" (Dennis et al, 2020). This implementation comes integrated with custom adversarial maze environments based on MiniGrid environment (Chevalier-Boisvert et al, 2018), as used in Dennis et al, 2020.

Unsupervised environment design (UED) methods propose a curriculum of tasks or environment instances (levels) that aims to foster more sample efficient learning and robust policies. PAIRED performs unsupervised environment design (UED) using a three-player game among two student agentsβ€”the protagonist and antagonistβ€”and an adversary. The antagonist is allied with the adversary, which proposes new environment instances (or levels) aiming to maximize the regret of the protagonist, estimated as the difference in returns achieved by the student agents across a batch of rollouts on proposed levels.

PAIRED has a strong guarantee of robustness in that at Nash equilibrium, it provably induces a minimax regret policy for the protagonist, which means that the protagonist optimally trades off regret across all possible levels that can be proposed by the adversary.

UED algorithms included

  • PAIRED (Protagonist Antagonist Induced Regret Environment Design)
  • Minimax
  • Domain randomization

Set up

To install the necessary dependencies, run the following commands:

conda create --name paired python=3.8
conda activate paired
pip install -r requirements.txt

git clone https://github.com/openai/baselines.git
cd baselines
pip install -e .
cd ..

Configuration

Detailed descriptions of the various command-line arguments for the main training script, train.py can be found in arguments.py.

Experiments

MiniGrid benchmark results

For convenience, configuration json files are provided to generate the commands to run the specific experimental settings featured in Dennis et al, 2020. To generate the command to launch 1 run of the experiment codified by the configuration file config.json in the local folder train_scripts/configs, simply run the following, and copy and paste the output into your command line.

python train_scripts/make_cmd.py --json config --num_trials 1

Alternatively, you can run the following to copy the command directly to your clipboard:

python train_scripts/make_cmd.py --json config --num_trials 1 | pbcopy

By default, each experiment run will generate a folder in ~/logs/paired named after the --xpid argument passed into the the train command. This folder will contain log outputs in logs.csv and periodic screenshots of generated levels in the directory screenshots. Each screenshot uses the naming convention update_<number of PPO updates>.png. The latest model checkpoint will be output to model.tar, and archived model checkpoints are also saved according to the naming convention model_<number of PPO updates>.tar.

The json files for reproducing various MiniGrid experiments from Dennis et al, 2020 are listed below:

Method json config
PAIRED minigrid/paired.json
Minimax minigrid/minimax.json
DR minigrid/dr.json

Evaluation

You can use the following command to batch evaluate all trained models whose output directory shares the same <xpid_prefix> before the indexing _[0-9]+ suffix:

python -m eval \
--base_path "~/logs/paired" \
--prefix '<xpid prefix>' \
--num_processes 2 \
--env_names \
'MultiGrid-SixteenRooms-v0,MultiGrid-Labyrinth-v0,MultiGrid-Maze-v0'
--num_episodes 100 \
--model_tar model
Owner
UCL DARK Lab
UCL Deciding, Acting, and Reasoning with Knowledge (DARK) Lab
UCL DARK Lab
torchsummaryDynamic: support real FLOPs calculation of dynamic network or user-custom PyTorch ops

torchsummaryDynamic Improved tool of torchsummaryX. torchsummaryDynamic support real FLOPs calculation of dynamic network or user-custom PyTorch ops.

Bohong Chen 1 Jan 07, 2022
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022
Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy"

Shapeland Simulator Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy" Download the video at https://www.youtube.com/watch?

TouringPlans.com 70 Dec 14, 2022
Code for our paper "Interactive Analysis of CNN Robustness"

Perturber Code for our paper "Interactive Analysis of CNN Robustness" Datasets Feature visualizations: Google Drive Fine-tuning checkpoints as saved m

Stefan Sietzen 0 Aug 17, 2021
ivadomed is an integrated framework for medical image analysis with deep learning.

Repository on the collaborative IVADO medical imaging project between the Mila and NeuroPoly labs.

144 Dec 19, 2022
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".

PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E

Yuan Gong 84 Dec 27, 2022
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022
Official PyTorch implementation of the paper "Self-Supervised Relational Reasoning for Representation Learning", NeurIPS 2020 Spotlight.

Official PyTorch implementation of the paper: "Self-Supervised Relational Reasoning for Representation Learning" (2020), Patacchiola, M., and Storkey,

Massimiliano Patacchiola 135 Jan 03, 2023
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023
РСшСния, подсказки, тСсты ΠΈ ΡƒΡ‚ΠΈΠ»ΠΈΡ‚Ρ‹ для Ρ‚Ρ€Π΅Π½ΠΈΡ€ΠΎΠ²ΠΊΠΈ ΠΏΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ°ΠΌ ΠΎΡ‚ ЯндСкса.

РСшСния ΠΈ подсказки ΠΊ Ρ‚Ρ€Π΅Π½ΠΈΡ€ΠΎΠ²ΠΊΠ΅ ΠΏΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ°ΠΌ ΠΎΡ‚ ЯндСкса Π§Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π²Π½ΡƒΡ‚Ρ€ΠΈ РСшСния с подсказками ΠΈ коммСнтариями; Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡƒΡŽ сначала ΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ md Ρ„Π°ΠΉΠ» ΠΏ

Yankovsky Andrey 50 Dec 26, 2022
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
Draw like Bob Ross using the power of Neural Networks (With PyTorch)!

Draw like Bob Ross using the power of Neural Networks! (+ Pytorch) Learning Process Visualization Getting started Install dependecies Requires python3

Kendrick Tan 116 Mar 07, 2022
Occlusion robust 3D face reconstruction model in CFR-GAN (WACV 2022)

Occlusion Robust 3D face Reconstruction Yeong-Joon Ju, Gun-Hee Lee, Jung-Ho Hong, and Seong-Whan Lee Code for Occlusion Robust 3D Face Reconstruction

Yeongjoon 31 Dec 19, 2022
This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

Mohamed Naji Aboo 3 Apr 18, 2022
Do you like Quick, Draw? Well what if you could train/predict doodles drawn inside Streamlit? Also draws lines, circles and boxes over background images for annotation.

Streamlit - Drawable Canvas Streamlit component which provides a sketching canvas using Fabric.js. Features Draw freely, lines, circles, boxes and pol

Fanilo Andrianasolo 325 Dec 28, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

4 Feb 13, 2022
A machine learning malware analysis framework for Android apps.

πŸ•΅οΈ A machine learning malware analysis framework for Android apps. ☒️ DroidDetective is a Python tool for analysing Android applications (APKs) for p

James Stevenson 77 Dec 27, 2022