Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy"

Overview

Shapeland Simulator

License

  • This source code is licensed under the Creative Commons 4.0 International License
  • See the file named LICENSE for details

Tools You Will Need to Run The Simulation

The simulation is written in Python and has been tested with python 3.6.9. Download the latest version of python here: https://www.python.org/downloads/

The code also uses Jupyter Notebooks, available here: https://jupyter.org/install

Installation and Setup

Clone this repository to your local machine:

$ git clone https://github.com/TouringPlans/shapeland.git

Inside the repository is a directory called "Code". Start Jupyter Notebook like this and you'll see the entire notebook that runs the simulator and prints results:

$ jupyter notebook amusement_park_sim.ipynb

Code Organization

There are 5 main classes in this simulation:

  • activity.py: An activity is something an agent can do inside the park. Activities include going on rides, eating, and so on.

  • agent.py: Simulates one guest making decisions in the park.

  • attraction.py: Encapsulates all of the calculations to simulate an attraction, including whether it has FASTPASS, its hourly capacity, how that capacity is split among different lines, and so on.

  • behavior_reference.py: Each Agent has a behavioral archetype. -- Ride Enthusiast: wants to stay for a long time, go on as many attractions as possible, doesn't want to visit activites, doesn't mind waiting -- Ride Favorer: wants to go on a lot of attractions, but will vists activites occasionally, will wait for a while in a queue -- Park Tourer: wants to stay for a long time and wants to see attractions and activities equally, reasonable about wait times -- Park Visitor: doesn't want to stay long and wants to see attractions and activities equally, inpatient about wait times -- Activity Favorer: doesn't want to stay long and prefers activities, reasonable about wait times -- Activity Enthusiast: wants to visit a lot of activities, reasonable about wait times -- Archetypes can be tweaked and new archetypes can be added in behavior_reference.py.

  • park.py: The park contains Agents, Attractions and Activities. -- Total Daily Agents: dictates how many agents visit the park within a day -- Hourly Percent: dictates what percentage of Total Daily Agents visits the park at each hour -- Perfect Arrivals: enforces that the exact amount of Total Daily Agents arrives during the day -- Expedited Pass Ability Percent: percent of agents aware of expeditied passes -- Expedited Threshold: acceptable queue wait time length before searching for an expedited pass -- Expedited Limit: total number of expedited pass an agent can hold at any given time

Owner
TouringPlans.com
TouringPlans.com
auto-tuning momentum SGD optimizer

YellowFin YellowFin is an auto-tuning optimizer based on momentum SGD which requires no manual specification of learning rate and momentum. It measure

Jian Zhang 288 Nov 19, 2022
Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Incidents Dataset See the following pages for more details: Project page: IncidentsDataset.csail.mit.edu. ECCV 2020 Paper "Detecting natural disasters

Ethan Weber 67 Dec 27, 2022
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
Detecting Blurred Ground-based Sky/Cloud Images

Detecting Blurred Ground-based Sky/Cloud Images With the spirit of reproducible research, this repository contains all the codes required to produce t

1 Oct 20, 2021
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️

GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️ This repo contains a PyTorch implementation of the original GAT paper ( 🔗 Veličković et

Aleksa Gordić 1.9k Jan 09, 2023
Laplace Redux -- Effortless Bayesian Deep Learning

Laplace Redux - Effortless Bayesian Deep Learning This repository contains the code to run the experiments for the paper Laplace Redux - Effortless Ba

Runa Eschenhagen 28 Dec 07, 2022
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022
Contextual Attention Network: Transformer Meets U-Net

Contextual Attention Network: Transformer Meets U-Net Contexual attention network for medical image segmentation with state of the art results on skin

Reza Azad 67 Nov 28, 2022
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021
Official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks".

GN-Transformer AST This is the official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks". Data Prep

Cheng Jun-Yan 10 Nov 26, 2022
It's a implement of this paper:Relation extraction via Multi-Level attention CNNs

Relation Classification via Multi-Level Attention CNNs It's a implement of this paper:Relation Classification via Multi-Level Attention CNNs. Training

Aybss 2 Nov 04, 2022
This is an official implementation for "Self-Supervised Learning with Swin Transformers".

Self-Supervised Learning with Vision Transformers By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu This repo is the

Swin Transformer 529 Jan 02, 2023
Pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments

Cascaded-FCN This repository contains the pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments the liver and its lesions out of

300 Nov 22, 2022
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

MilaGraph 117 Dec 09, 2022
PyTorch implementation of Federated Learning with Non-IID Data, and federated learning algorithms, including FedAvg, FedProx.

Federated Learning with Non-IID Data This is an implementation of the following paper: Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, Vik

Youngjoon Lee 48 Dec 29, 2022