Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On

Related tags

Deep LearningUPMT
Overview

UPMT

Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On

See main.py as an example:

from model import PopMusicTransformer
import argparse
import tensorflow as tf
import os
import pickle
import numpy as np
from glob import glob
parser = argparse.ArgumentParser(description='')
parser.add_argument('--prompt_path', dest='prompt_path', default='./test/prompt/test_input.mid', help='path of prompt')
parser.add_argument('--output_path', dest='output_path', default='./test/output/test_generate.mid', help='path of the output')
parser.add_argument('--favorite_path', dest='favorite_path', default='./test/favorite/test_favorite.mid', help='path of favorite')
parser.add_argument('--trainingdata_path', dest='trainingdata_path', default='./test/data/training.pickle', help='path of favorite training data')
parser.add_argument('--output_checkpoint_folder', dest='output_checkpoint_folder', default='./test/checkpoint/', help='path of favorite')
parser.add_argument('--alpha', default=0.1, help='weight of events')
parser.add_argument('--temperature', default=300, help='sampling temperature')
parser.add_argument('--topk', default=5, help='sampling topk')
parser.add_argument('--smpi', default=[-2,-2,-1,-2,-2,2,2,5], help='signature music pattern interval')

parser.add_argument('--type', dest='type', default='generateno', help='generateno or pretrain or prepare')

args = parser.parse_args()


def main(_):

    tfconfig = tf.ConfigProto(allow_soft_placement=True)
    with tf.Session(config=tfconfig) as sess:
        if args.type == 'prepare':
            midi_paths = glob('./test/favorite'+'/*.mid')
            model = PopMusicTransformer(
                checkpoint='./test/model',
                is_training=False)
            model.prepare_data(
                        midi_paths=midi_paths)    
        elif args.type == 'generateno':
            model = PopMusicTransformer(
                checkpoint='./test/model',
                is_training=False)
            model.generate_noteon(
                        temperature=float(args.temperature),
                        topk=int(args.topk),
                        output_path=args.output_path,  
                        smpi= np.array(args.smpi),
                        prompt=args.prompt_path)
        elif args.type =='pretrain':
            training_data = pickle.load(open(args.trainingdata_path,"rb"))
            if not os.path.exists(args.output_checkpoint_folder):
                os.mkdir(args.output_checkpoint_folder)
            model = PopMusicTransformer(
                checkpoint='./test/model',
                is_training=True)
            model.finetune(
                training_data=training_data,
                alpha=float(args.alpha),
                favoritepath=args.favorite_path,
                output_checkpoint_folder=args.output_checkpoint_folder)

if __name__ == '__main__':
    tf.app.run()

Thanks https://github.com/YatingMusic/remi for the open source.

Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Dec 31, 2022
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
Unofficial implementation of PatchCore anomaly detection

PatchCore anomaly detection Unofficial implementation of PatchCore(new SOTA) anomaly detection model Original Paper : Towards Total Recall in Industri

Changwoo Ha 268 Dec 22, 2022
Object recognition using Azure Custom Vision AI and Azure Functions

Step by Step on how to create an object recognition model using Custom Vision, export the model and run the model in an Azure Function

El Bruno 11 Jul 08, 2022
Official code for the ICLR 2021 paper Neural ODE Processes

Neural ODE Processes Official code for the paper Neural ODE Processes (ICLR 2021). Abstract Neural Ordinary Differential Equations (NODEs) use a neura

Cristian Bodnar 50 Oct 28, 2022
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
DL & CV-based indicator toolset for the vehicle drivers via live dash-cam footage.

Vehicle Indicator Toolset Deep Learning and Computer Vision based indicator toolset for vehicle drivers using live dash-cam footages. Tracking of vehi

Alex Xu 12 Dec 28, 2021
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
PyTorch implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 13.4k Jan 08, 2023
A simple root calculater for python

Root A simple root calculater Usage/Examples python3 root.py 9 3 4 # Order: number - grid - number of decimals # Output: 2.08

Reza Hosseinzadeh 5 Feb 10, 2022
Official code for "Decoupling Zero-Shot Semantic Segmentation"

Decoupling Zero-Shot Semantic Segmentation This is the official code for the arxiv. ZegFormer is the first framework that decouple the zero-shot seman

Jian Ding 108 Dec 30, 2022
OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'

OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN) C

- 8 Sep 27, 2022
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

VITA 71 Dec 28, 2022
Efficient semidefinite bounds for multi-label discrete graphical models.

Low rank solvers #################################### benchmark/ : folder with the random instances used in the paper. ############################

1 Dec 08, 2022
Datasets, Transforms and Models specific to Computer Vision

vision Datasets, Transforms and Models specific to Computer Vision Installation First install the nightly version of OneFlow python3 -m pip install on

OneFlow 68 Dec 07, 2022
SegNet-like Autoencoders in TensorFlow

SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a

Andrea Azzini 66 Nov 05, 2021
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022