The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Overview

Watermark-Robustness-Toolbox - Official PyTorch Implementation

contact Python 3.6 PyTorch 1.3.1 cuDNN 10.1.2 Website shields.io GPLv3 license

This repository contains the official PyTorch implementation of the following paper to appear at IEEE Security and Privacy 2022:

SoK: How Robust is Deep Neural Network Image Classification Watermarking?
Nils Lukas, Edward Jiang, Xinda Li, Florian Kerschbaum
https://arxiv.org/abs/2108.04974

Abstract: Deep Neural Network (DNN) watermarking is a method for provenance verification of DNN models. Watermarking should be robust against watermark removal attacks that derive a surrogate model that evades provenance verification. Many watermarking schemes that claim robustness have been proposed, but their robustness is only validated in isolation against a relatively small set of attacks. There is no systematic, empirical evaluation of these claims against a common, comprehensive set of removal attacks. This uncertainty about a watermarking scheme's robustness causes difficulty to trust their deployment in practice. In this paper, we evaluate whether recently proposed watermarking schemes that claim robustness are robust against a large set of removal attacks. We survey methods from the literature that (i) are known removal attacks, (ii) derive surrogate models but have not been evaluated as removal attacks, and (iii) novel removal attacks. Weight shifting, transfer learning and smooth retraining are novel removal attacks adapted to the DNN watermarking schemes surveyed in this paper. We propose taxonomies for watermarking schemes and removal attacks. Our empirical evaluation includes an ablation study over sets of parameters for each attack and watermarking scheme on the image classification datasets CIFAR-10 and ImageNet. Surprisingly, our study shows that none of the surveyed watermarking schemes is robust in practice. We find that schemes fail to withstand adaptive attacks and known methods for deriving surrogate models that have not been evaluated as removal attacks. This points to intrinsic flaws in how robustness is currently evaluated. Our evaluation includes a discussion of the runtime of each attack to underpin their practical relevance. While none of the schemes is robust against all attacks, none of the attacks removes all watermarks. We show that attacks can be combined and find combined attacks that remove all watermarks. We show that watermarking schemes need to be evaluated against a more extensive set of removal attacks with a more realistic adversary model. Our source code and a complete dataset of evaluation results will be made publicly available, which allows to independently verify our conclusions.

Features

All watermarking schemes and removal attacks are configured for the image classification datasets CIFAR-10 (32x32 pixels, 10 classes) and ImageNet (224x224 pixels, 1k classes). We implemented the following watermarking schemes, sorted by their categories:

.. and the following removal attacks, sorted by their categories:

Get Started

At this point, the Watermark-Robustness-Toolbox project is not available as a standalone pip package, but we are working on allowing an installation via pip. We describe a manual installation and usage. First, install all dependencies via pip.

$ pip install -r requirements.txt

The following four main scripts provide the entire toolbox's functionality:

  • train.py: Pre-trains an unmarked neural network.
  • embed.py: Embeds a watermark into a pre-trained neural network.
  • steal.py: Performs a removal attack against a watermarked neural network.
  • decision_threshold.py: Computes the decision threshold for a watermarking scheme.

We use the mlconfig library to pass configuration hyperparameters to each script. Configuration files used in our paper for CIFAR-10 and ImageNet can be found in the configs/ directory. Configuration files store all hyperparameters needed to reproduce an experiment.

Step 1: Pre-train a Model on CIFAR-10

$ python train.py --config configs/cifar10/train_configs/resnet.yaml

This creates an outputs directory and saves a model file at outputs/cifar10/null_models/resnet/.

Step 2: Embed an Adi Watermark

$ python embed.py --wm_config configs/cifar10/wm_configs/adi.yaml \
                  --filename outputs/cifar10/null_models/resnet/best.pth

This embeds an Adi watermark into the pre-trained model from 'Example 1' and saves (i) the watermarked model and (ii) all data to read the watermark under outputs/cifar10/wm/adi/00000_adi/.

Step 3: Attempt to Remove a Watermark

$ python steal.py --attack_config configs/cifar10/attack_configs/ftal.yaml \
                  --wm_dir outputs/cifar10/wm/adi/00000_adi/

This runs the Fine-Tuning (FTAL) removal attack against the watermarked model and creates a surrogate model stored under outputs/cifar10/attacks/ftal/. The directory also contains human-readable debug files, such as the surrogate model's watermark and test accuracies.

Datasets

Our toolbox currently implements custom data loaders (class WRTDataLoader) for the following datasets.

  • CIFAR-10
  • ImageNet (needs manual download)
  • Omniglot (needs manual download)
  • Open Images (needs manual download)

Documentation

We are actively working on documenting the parameters of each watermarking scheme and removal attack. At this point, we can only refer to the method's source code (at wrt/defenses/ and wrt/attacks/). Soon we will host a complete documentation of all parameters, so stay tuned!

Contribute

We encourage authors of watermarking schemes or removal attacks to implement their methods in the Watermark-Robustness-Toolbox to make them publicly accessible in a unified framework. Our aim is to improve reproducibility which makes it easier to evaluate a scheme's robustness. Any contributions or suggestions for improvements are welcome and greatly appreciated. This toolbox is maintained as part of a university project by graduate students.

Reference

The codebase has been based off an early version of the Adversarial-Robustness-Tooblox.

Cite our paper

@InProceedings{lukas2022watermarkingsok,
  title={SoK: How Robust is Deep Neural Network Image Classification Watermarking?}, 
  author={Lukas, Nils and Jiang, Edward and Li, Xinda and Kerschbaum, Florian},
  year={2022},
  booktitle={IEEE Symposium on Security and Privacy}
}
Capstone-Project-2 - A game program written in the Python language

Capstone-Project-2 My Pygame Game Information: Description This Pygame project i

Nhlakanipho Khulekani Hlophe 1 Jan 04, 2022
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
The MLOps platform for innovators 🚀

​ DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training datas

9 Jan 03, 2023
Simple STAC Catalogs discovery tool.

STAC Catalog Discovery Simple STAC discovery tool. Just paste the STAC Catalog link and press Enter. Details STAC Discovery tool enables discovering d

Mykola Kozyr 21 Oct 19, 2022
Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and shape estimation at the university of Lincoln

PhD_3DPerception Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and s

lelouedec 2 Oct 06, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022
Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021]

Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021] This repository is the official implementation of Moiré Attack (MA): A New Pot

Dantong Niu 22 Dec 24, 2022
PyTorch implementation of Barlow Twins.

Barlow Twins: Self-Supervised Learning via Redundancy Reduction PyTorch implementation of Barlow Twins. @article{zbontar2021barlow, title={Barlow Tw

Facebook Research 839 Dec 29, 2022
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

Launch Platform 16 Oct 11, 2022
Tutorial page of the Climate Hack, the greatest hackathon ever

Tutorial page of the Climate Hack, the greatest hackathon ever

UCL Artificial Intelligence Society 12 Jul 02, 2022
DM-ACME compatible implementation of the Arm26 environment from Mujoco

ACME-compatible implementation of Arm26 from Mujoco This repository contains a customized implementation of Mujoco's Arm26 model, that can be used wit

1 Dec 24, 2021
Code for "Offline Meta-Reinforcement Learning with Advantage Weighting" [ICML 2021]

Offline Meta-Reinforcement Learning with Advantage Weighting (MACAW) MACAW code used for the experiments in the ICML 2021 paper. Installing the enviro

Eric Mitchell 28 Jan 01, 2023
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Microsoft 5.7k Jan 09, 2023
Text to Image Generation with Semantic-Spatial Aware GAN

text2image This repository includes the implementation for Text to Image Generation with Semantic-Spatial Aware GAN This repo is not completely. Netwo

CVDDL 124 Dec 30, 2022
Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN-v2 StackGAN-v1: Tensorflow implementation StackGAN-v1: Pytorch implementation Inception score evaluation Pytorch implementation for reproduci

Han Zhang 809 Dec 16, 2022