Dynamic Slimmable Network (CVPR 2021, Oral)

Overview

Dynamic Slimmable Network (DS-Net)

This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral).

image

Architecture of DS-Net. The width of each supernet stage is adjusted adaptively by the slimming ratio ρ predicted by the gate.

image

Accuracy vs. complexity on ImageNet.

Usage

1. Requirements

2. Stage I: Supernet Training

For example, train dynamic slimmable MobileNet supernet with 8 GPUs (takes about 2 days):

python -m torch.distributed.launch --nproc_per_node=8 train.py /PATH/TO/ImageNet -c ./configs/mobilenetv1_bn_uniform.yml

3. Stage II: Gate Training

  • Will be available soon

Citation

If you use our code for your paper, please cite:

@inproceedings{li2021dynamic,
  author = {Changlin Li and
            Guangrun Wang and
            Bing Wang and
            Xiaodan Liang and
            Zhihui Li and
            Xiaojun Chang},
  title = {Dynamic Slimmable Network},
  booktitle = {CVPR},
  year = {2021}
}
Comments
  • The usage of gumbel softmax in DS-Net

    The usage of gumbel softmax in DS-Net

    Thank you for your very nice work,I want to know that the effect of gumble softmax,because I think the network can be trained without gumble softmax. Is the gumbel softmax just aimed to increase the randomness of channel choice?

    discussion 
    opened by LinyeLi60 7
  • UserWarning: Argument interpolation should be of type InterpolationMode instead of int. Please, use InterpolationMode enum.

    UserWarning: Argument interpolation should be of type InterpolationMode instead of int. Please, use InterpolationMode enum.

    Why I get an warning: /home/chauncey/.local/lib/python3.8/site-packages/torchvision/transforms/functional.py:364: UserWarning: Argument interpolation should be of type InterpolationMode instead of int. Please, use InterpolationMode enum. warnings.warn( when I use python3 -m torch.distributed.launch --nproc_per_node=1 train.py ./imagenet -c ./configs/mobilenetv1_bn_uniform.yml

    opened by Chauncey-Wang 3
  • Question about calculating MAdds of dynamic network in the paper

    Question about calculating MAdds of dynamic network in the paper

    Thank you for your great work, and I have a question about how to calculate MAdds in your paper. The dynamic network has different widths and MAdds for each instance, but you denoted MAdds for your networks. Are they the average MAdds for the whole dataset?

    discussion 
    opened by sseung0703 3
  • why not set ensemble_ib to True?

    why not set ensemble_ib to True?

    Hi,

    I found that ensemble_ib is set to False for both slim training and gate training from the configs, but from paper it would boost the performance when set toTrue.

    Any idea?

    opened by twmht 2
  • MAdds of Pretrained Supernet

    MAdds of Pretrained Supernet

    Hi Changlin, your work is excellent. I have a question about the calculation of MAdds, in README.md the MAdds of Subnetwork 13 is 565M, but I think the MAdds of Subnetwork 13 should be 821M observed in my experiments, because the channel number of Subnetwork 13 is larger than the original MobileNetV1, and the original MobileNetV1 1.0's MAdds should be 565M. Looking forward to your reply.

    opened by LinyeLi60 2
  • Error of change the num_choice in mobilenetv1_bn_uniform_reset_bn.yml

    Error of change the num_choice in mobilenetv1_bn_uniform_reset_bn.yml

    I follow your suggestion to set the num_choice in mobilenetv1_bn_uniform_reset_bn.yml to 14, but get an expected error when I use python -m torch.distributed.launch --nproc_per_node=8 train.py /PATH/TO/ImageNet -c ./configs/mobilenetv1_bn_uniform_reset_bn.yml.

    08/25 10:15:57 AM Recalibrating BatchNorm statistics... 08/25 10:16:10 AM Finish recalibrating BatchNorm statistics. 08/25 10:16:19 AM Finish recalibrating BatchNorm statistics. 08/25 10:16:21 AM Test: [ 0/0] Mode: 0 Time: 0.344 (0.344) Loss: 6.9204 (6.9204) [email protected]: 0.0000 ( 0.0000) [email protected]: 0.0000 ( 0.0000) Flops: 132890408 (132890408) 08/25 10:16:22 AM Test: [ 0/0] Mode: 1 Time: 0.406 (0.406) Loss: 6.9189 (6.9189) [email protected]: 0.0000 ( 0.0000) [email protected]: 0.0000 ( 0.0000) Flops: 152917440 (152917440) 08/25 10:16:22 AM Test: [ 0/0] Mode: 2 Time: 0.381 (0.381) Loss: 6.9187 (6.9187) [email protected]: 0.0000 ( 0.0000) [email protected]: 0.0000 ( 0.0000) Flops: 175152224 (175152224) 08/25 10:16:23 AM Test: [ 0/0] Mode: 3 Time: 0.389 (0.389) Loss: 6.9134 (6.9134) [email protected]: 0.0000 ( 0.0000) [email protected]: 0.0000 ( 0.0000) Flops: 199594752 (199594752) Traceback (most recent call last): File "train.py", line 658, in main() File "train.py", line 635, in main eval_metrics.append(validate_slim(model, File "/home/chauncey/PycharmProjects/DS-Net-main/dyn_slim/apis/train_slim.py", line 215, in validate_slim output = model(input) File "/home/chauncey/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/chauncey/PycharmProjects/DS-Net-main/dyn_slim/models/dyn_slim_net.py", line 191, in forward x = self.forward_features(x) File "/home/chauncey/PycharmProjects/DS-Net-main/dyn_slim/models/dyn_slim_net.py", line 178, in forward_features x = stage(x) File "/home/chauncey/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/chauncey/PycharmProjects/DS-Net-main/dyn_slim/models/dyn_slim_stages.py", line 48, in forward x = self.first_block(x) File "/home/chauncey/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/chauncey/PycharmProjects/DS-Net-main/dyn_slim/models/dyn_slim_blocks.py", line 240, in forward x = self.conv_pw(x) File "/home/chauncey/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/chauncey/PycharmProjects/DS-Net-main/dyn_slim/models/dyn_slim_ops.py", line 94, in forward self.running_outc = self.out_channels_list[self.channel_choice] IndexError: list index out of range

    It looks like we should make some adjustment in other py files.

    opened by chaunceywx 2
  • Why the num_choice in different yml is different?

    Why the num_choice in different yml is different?

    Why you set num_choice in mobilenetv1_bn_uniform_reset_bn.yml as 4, but set this parameter as 14 in the other two yml file?

    老哥,如果你也是中国人,咱们还是用中文交流吧,我英语水平比较感人。。。

    opened by chaunceywx 2
  • 运行问题

    运行问题

    请问大佬下面这个问题是为什么 Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.


    /root/anaconda3/envs/0108/lib/python3.6/site-packages/torchvision/io/image.py:11: UserWarning: Failed to load image Python extension: /root/anaconda3/envs/0108/lib/python3.6/site-packages/torchvision/image.so: undefined symbol: _ZNK3c106IValue23reportToTensorTypeErrorEv warn(f"Failed to load image Python extension: {e}") /root/anaconda3/envs/0108/lib/python3.6/site-packages/torchvision/io/image.py:11: UserWarning: Failed to load image Python extension: /root/anaconda3/envs/0108/lib/python3.6/site-packages/torchvision/image.so: undefined symbol: _ZNK3c106IValue23reportToTensorTypeErrorEv warn(f"Failed to load image Python extension: {e}") 01/21 05:42:18 AM Added key: store_based_barrier_key:1 to store for rank: 1 01/21 05:42:18 AM Added key: store_based_barrier_key:1 to store for rank: 0 01/21 05:42:18 AM Training in distributed mode with multiple processes, 1 GPU per process. Process 0, total 2. 01/21 05:42:18 AM Training in distributed mode with multiple processes, 1 GPU per process. Process 1, total 2. 01/21 05:42:20 AM Model slimmable_mbnet_v1_bn_uniform created, param count: 7676204 01/21 05:42:20 AM Data processing configuration for current model + dataset: 01/21 05:42:20 AM input_size: (3, 224, 224) 01/21 05:42:20 AM interpolation: bicubic 01/21 05:42:20 AM mean: (0.485, 0.456, 0.406) 01/21 05:42:20 AM std: (0.229, 0.224, 0.225) 01/21 05:42:20 AM crop_pct: 0.875 01/21 05:42:20 AM NVIDIA APEX not installed. AMP off. 01/21 05:42:21 AM Using torch DistributedDataParallel. Install NVIDIA Apex for Apex DDP. 01/21 05:42:21 AM Scheduled epochs: 40 01/21 05:42:21 AM Training folder does not exist at: images/train 01/21 05:42:21 AM Training folder does not exist at: images/train Killing subprocess 239 Killing subprocess 240 Traceback (most recent call last): File "/root/anaconda3/envs/0108/lib/python3.6/runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "/root/anaconda3/envs/0108/lib/python3.6/runpy.py", line 85, in _run_code exec(code, run_globals) File "/root/anaconda3/envs/0108/lib/python3.6/site-packages/torch/distributed/launch.py", line 340, in main() File "/root/anaconda3/envs/0108/lib/python3.6/site-packages/torch/distributed/launch.py", line 326, in main sigkill_handler(signal.SIGTERM, None) # not coming back File "/root/anaconda3/envs/0108/lib/python3.6/site-packages/torch/distributed/launch.py", line 301, in sigkill_handler raise subprocess.CalledProcessError(returncode=last_return_code, cmd=cmd) subprocess.CalledProcessError: Command '['/root/anaconda3/envs/0108/bin/python', '-u', 'train.py', '--local_rank=1', 'images', '-c', './configs/mobilenetv1_bn_uniform_reset_bn.yml']' returned non-zero exit status 1.

    opened by 6imust 1
  • project environment

    project environment

    Hi,could you provide the environment for the project?I try to train the network with python=3.8 pytorch=1.7.1,cuda=10.2.Shortly after starting training,there's a RuntimeError: CUDA error: device-side assert triggered happened,and some other environment also lead to this error.I'm not sure whether the problem is caused by the difference of environment.

    opened by singularity97 1
  • Softmax twice for SGS loss?

    Softmax twice for SGS loss?

    Dear authors, thanks for this nice work.

    I wonder why the calculation of the SGS loss is using the softmaxed data rather than the logits, considering the PyTorch CrossEntropyLoss already contains a softmax inside.

    https://github.com/changlin31/DS-Net/blob/15cd3036970ec27d2c306014344fd50d9e9b888b/dyn_slim/apis/train_slim_gate.py#L98 https://github.com/changlin31/DS-Net/blob/15cd3036970ec27d2c306014344fd50d9e9b888b/dyn_slim/models/dyn_slim_blocks.py#L324-L355

    opened by Yu-Zhewen 0
  • Can we futher improve autoalim without gate?

    Can we futher improve autoalim without gate?

    It is not easy to deploy gate operator with some other backends, like TensorRT.

    So my question is can we futher improve autoalim without the dynamic gate when inference?Any ongoing work are doing this?

    opened by twmht 3
  • DS-Net for object detection

    DS-Net for object detection

    Hello. Thanks for your work. I noticed that you also conducted some experiments in object detection. I wonder whether or when you will release the code

    opened by NoLookDefense 8
  • Dynamic path for DS-mobilenet

    Dynamic path for DS-mobilenet

    Hi. Thanks for your work. I am reading your paper and trying to reimplement, and I feel confused about some details. You mentioned in your paper that the slimming ratio ρ∈[0.35 : 0.05 : 1.25], which have 18 paths. However, in your code, there are only 14 paths ρ∈[0.35 : 0.05 : 1] as mentioned in https://github.com/changlin31/DS-Net/blob/15cd3036970ec27d2c306014344fd50d9e9b888b/dyn_slim/models/dyn_slim_net.py#L36 . And also, when conducting gate training, the gate function only has a 4-dimension output, meaning that there is only 4 paths and the slimming ratio is restricted to ρ∈[0.35 : 0.05 : 0.5]. https://github.com/changlin31/DS-Net/blob/15cd3036970ec27d2c306014344fd50d9e9b888b/dyn_slim/models/dyn_slim_blocks.py#L204 Why the dynamic path for larger network is not used?

    opened by NoLookDefense 1
Releases(v0.0.1)
  • v0.0.1(Nov 30, 2021)

    Pretrained weights of DS-MBNet supernet. Detailed accuracy of each sub-networks:

    | Subnetwork | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | ----------------- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | MAdds | 133M | 153M | 175M | 200M | 226M | 255M | 286M | 319M | 355M | 393M | 433M | 475M | 519M | 565M | | Top-1 (%) | 70.1 | 70.4 | 70.8 | 71.2 | 71.6 | 72.0 | 72.4 | 72.7 | 73.0 | 73.3 | 73.6 | 73.9 | 74.1 | 74.6 | | Top-5 (%) | 89.4 | 89.6 | 89.9 | 90.2 | 90.3 | 90.6 | 90.9 | 91.0 | 91.2 | 91.4 | 91.5 | 91.7 | 91.8 | 92.0 |

    Source code(tar.gz)
    Source code(zip)
    DS_MBNet-70_1.pth.tar(60.93 MB)
    log-DS_MBNet-70_1.txt(6.12 KB)
Owner
Changlin Li
Changlin Li
🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful too

Cogitare - Modern and Easy Deep Learning with Python 76 Sep 30, 2022
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
A project studying the influence of communication in multi-objective normal-form games

Communication in Multi-Objective Normal-Form Games This repo consists of five different types of agents that we have used in our study of communicatio

Willem Röpke 0 Dec 17, 2021
The spiritual successor to knockknock for PyTorch Lightning, get notified when your training ends

Who's there? The spiritual successor to knockknock for PyTorch Lightning, to get a notification when your training is complete or when it crashes duri

twsl 70 Oct 06, 2022
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie

17 Aug 23, 2022
Tensorflow-seq2seq-tutorials - Dynamic seq2seq in TensorFlow, step by step

seq2seq with TensorFlow Collection of unfinished tutorials. May be good for educational purposes. 1 - simple sequence-to-sequence model with dynamic u

Matvey Ezhov 1k Dec 17, 2022
Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing

EGFNet Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing Dataset and Results Test maps: 百度网盘 提取码:zust Citation @ARTICLE{ author={Zhou,

ShaohuaDong 10 Dec 08, 2022
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022
CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Datset)

Graphlevel-SSL Overview Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Dataset). It is unified framework to co

JunSeok 8 Oct 15, 2021
Model Zoo for MindSpore

Welcome to the Model Zoo for MindSpore In order to facilitate developers to enjoy the benefits of MindSpore framework, we will continue to add typical

MindSpore 226 Jan 07, 2023
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model

This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch

Steffen 86 Dec 27, 2022
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

THUML @ Tsinghua University 221 Dec 31, 2022
Playable Video Generation

Playable Video Generation Playable Video Generation Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci Paper: ArX

Willi Menapace 136 Dec 31, 2022
Python implementation of Wu et al (2018)'s registration fusion

reg-fusion Projection of a central sulcus probability map using the RF-ANTs approach (right hemisphere shown). This is a Python implementation of Wu e

Dan Gale 26 Nov 12, 2021
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urb

Yu Tian 117 Jan 03, 2023
Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection

PPGNet: Learning Point-Pair Graph for Line Segment Detection PyTorch implementation of our CVPR 2019 paper: PPGNet: Learning Point-Pair Graph for Line

SVIP Lab 170 Oct 25, 2022
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022