Self-Supervised depth kalilia

Overview

Self-Supervised-depth

by kalilia.

Contents

0-depth-estimation-overview

Conference Tittle code Author mark note
Single Image Depth Estimation: An Overview Istanbul Technical University πŸ™‰

*-datasets

Tittle yaer mark note
Vision meets Robotics: The KITTI Dataset 2012 Karlsruhe Institute of Technology
nuScenes: A multimodal dataset for autonomous driving 2018 nuTonomy: an APTIV company

1-Monocular-depth with Cost Volume

Conference Tittle code Author mark note
NIPS2020 Forget About the LiDAR: Self-Supervised Depth Estimators with MED Probability Volumes Korea Advanced Institute of Science and Technology πŸ™‰ link
CVPR2021 DRO: Deep Recurrent Optimizer for Structure-from-Motion Alibaba A.I. Labs πŸ™ˆ link
CVPR2021 The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth link Niantic πŸ™ˆ
CVPR2020 Self-supervised Monocular Trained Depth Estimation using Self-attention and Discrete Disparity Volume link Australian Institute for Machine Learning πŸ™ˆ
ECCV2020 Feature-metric Loss for Self-supervised Learning of Depth and Egomotion link πŸ™ˆ

2-Mono-SfM

2017

Conference Tittle code Author mark note
CVPR2017 Semi-Supervised Deep Learning for Monocular Depth Map Prediction RWTH Aachen University πŸ™ˆ
CVPR2017 SfMLearner: Unsupervised Learning of Depth and Ego-Motion from Video link UC Berkeley ⭐ link

2018

Conference Tittle code Author mark note
CVPR2018 DVO: Learning Depth from Monocular Videos using Direct Methods Carnegie Mellon University πŸ™ˆ
CVPR2018 GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose link SenseTime Research πŸ™ˆ
ECCV2018 DF-Net: Unsupervised Joint Learning of Depth and Flow using Cross-Task Consistency ) Virginia Tech πŸ™ˆ
ECCV2018 Supervising the new with the old: learning SFM from SFM ) University of Oxford πŸ™ˆ

2019

Conference Tittle code Author mark note
2019 Self-Supervised 3D Keypoint Learning for Ego-motion Estimation Toyota Research Institute (TRI) πŸ™ˆ
ICRA2019 SuperDepth: Self-Supervised, Super-Resolved Monocular Depth Estimation Toyota Research Institute (TRI) πŸ™ˆ
AAAI2019 Depth prediction without the sensors: Leveraging structure for unsupervised learning from monocular videos Harvard University/Google Brain πŸ™ˆ
ICCV2019 Unsupervised High-Resolution Depth Learning From Videos With Dual Networks Tsinghua University πŸ™ˆ
ICCV2019 Self-Supervised Monocular Depth Hints link Niantic πŸ™ˆ
ICCV2019 Monodepth2: Digging into self-supervised monocular depth estimation link UCL/niantic 🌟
NIPS2019 SC-SfMLearner: Unsupervised scale-consistent depth and ego-motion learning from monocular video University of Adelaide, Australia πŸ™ˆ
CVPR2019 Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera Motion, Optical Flow and Motion Segmentation Max Planck Institute for Intelligent Systems πŸ™ˆ
CoRL2019 Robust Semi-Supervised Monocular Depth Estimation with Reprojected Distances Toyota Research Institute (TRI) πŸ™ˆ

2020

Conference Tittle code Author mark note
ECCV2020 DeepSFM: Structure From Motion Via Deep Bundle Adjustment Fudan University πŸ™ˆ
CoRL2020 Unsupervised Monocular Depth Learning in Dynamic Scenes Google Research πŸ™ˆ
CoRL2020 Attentional Separation-and-Aggregation Network for Self-supervised Depth-Pose Learning in Dynamic Scenes Tsinghua University πŸ™‰
3DV2020 Neural Ray Surfaces for Self-Supervised Learning of Depth and Ego-motion Toyota Research Institute (TRI)
ICLR2020 Semantically-Guided Representation Learning for Self-Supervised Monocular Depth Toyota Research Institute (TRI)
CVPR2020 On the uncertainty of self-supervised monocular depth estimation link University of Bologna, Italy πŸ™ˆ
CVPR2020 Towards Better Generalization: Joint Depth-Pose Learning without PoseNet link Tsinghua University πŸ™ˆ link
CVPR2020 3D Packing for Self-Supervised Monocular Depth Estimation Toyota Research Institute (TRI) 🌟 link
CVPR2020 Self-supervised monocular trained depth estimation using self-attention and discrete disparity volume University of Adelaide πŸ™ˆ
2020 SAFENet: Self-Supervised Monocular Depth Estimation with Semantic-Aware Feature Extraction link Toyota Research Institute (TRI) πŸ™ˆ
2020 Self-Supervised Monocular Depth Estimation : Solving the Dynamic Object Problem by Semantic Guidance Technische UniversitΒ¨at Braunschweig, Germany πŸ™ˆ
IROS2020 Toward Hierarchical Self-Supervised Monocular Absolute Depth Estimation for Autonomous Driving Applications link Tongji University πŸ™ˆ

2021

Conference Tittle code Author mark note
AAAI2021 HR-Depth : High Resolution Self-Supervised Monocular Depth Estimation link Zhejiang University ⭐ link
AAAI2021 Learning Monocular Depth in Dynamic Scenes via Instance-Aware Projection Consistency KAIST ⭐ link
CVPR2021 Manydepth:The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth link Niantic πŸ™ˆ
CVPR2021 MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera link TUM πŸ™ˆ
IROS2021 Self-Supervised Scale Recovery for Monocular Depth and Egomotion Estimation University of Toronto πŸ™ˆ
2021 Self-supervised Depth Estimation Leveraging Global Perception and Geometric Smoothness Using On-board Videos Hong Kong Polytechnic University πŸ™ˆ
2021 Self-Supervised Structure-from-Motion through Tightly-Coupled Depth and Egomotion Networks University of Toronto πŸ™ˆ
2021 Moving SLAM: Fully Unsupervised Deep Learning in Non-Rigid Scenes HKUST πŸ™ˆ
2021 Unsupervised Joint Learning of Depth, Optical Flow, Ego-motion from Video Tongji University πŸ™ˆ
2021 Monocular Depth Estimation through Virtual-world Supervision and Real-world SfM Self-Supervision πŸ™ˆ
2021 Self-Supervised Learning of Depth and Ego- Motion from Video by Alternative Training and Geometric Constraints from 3D to 2D πŸ™ˆ
-update-time-09-13-2021-
ICCV2021 Fine-grained Semantics-aware Representation Enhancement for Self-supervised Monocular Depth Estimation Seoul National University πŸ™ˆ
ICCV2021 Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark Nanjing University of Science and Technology πŸ™ˆ
ICCV2021 Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation Zhejiang University πŸ™ˆ
ICCV2021 StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation Shanghai Jiao Tong University πŸ™ˆ
ICCV2021 MonoIndoor: Towards Good Practice of Self-Supervised Monocular Depth Estimation for Indoor Environments OPPO US Research Center πŸ™ˆ
Sensors Journal 2021 Unsupervised Monocular Depth Perception: Focusing on Moving Objects Chinese University of Hong Kong πŸ™ˆ
2021 R4Dyn: Exploring Radar for Self-Supervised Monocular Depth Estimation of Dynamic Scenes TUM ⭐
2021 Unsupervised Monocular Depth Estimation in Highly Complex Environments East China University of Science and Technology πŸ™ˆ

3-Multi-view-stereo

Conference Tittle code Author mark
PAMI2008 SGM:Stereo processing by Semi-Global matching and Mutual Information German Aerospace Cente πŸ™ˆ
ECCV2016 Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue University of Adelaide πŸ™ˆ
CVPR2017 DispNet: Unsupervised Monocular Depth Estimation with Left-Right Consistency University College London πŸ™ˆ
Cost Volume Pyramid Based Depth Inference for Multi-View Stereo Jiayu link Northwestern Polytechnical University πŸ™ˆ
CVPR2020 Semi-Supervised Deep Learning for Monocular Depth Map Prediction Australian National University πŸ™ˆ
AAAI2021 Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation South China University of Technology πŸ™ˆ
CVPR2021 Differentiable Diffusion for Dense Depth Estimation from Multi-view Images Brown University πŸ™ˆ
ICCV2021 NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Australian National University ⭐

4-SLAM-Visual-Odometry

Conference Tittle code Author mark
ECCV2014 LSD-SLAM: Large-Scale Direct Monocular SLAM TUM πŸ™ˆ
TR2015 ORB-SLAM: A Versatile and Accurate Monocular SLAM System Universidad de Zaragoza πŸ™ˆ
2016 Direct Visual Odometry using Bit-Planes Carnegie Mellon University πŸ™ˆ
TR2017 ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras Universidad de Zaragoza πŸ™ˆ
2016 A Photometrically Calibrated Benchmark For Monocular Visual Odometry TUM πŸ™ˆ

2018

Conference Tittle code Author mark
PAMI2018 DSO: Direct Sparse Odometry TUM πŸ™ˆ
IROS2018 LDSO: Direct Sparse Odometry with Loop Closure TUM πŸ™ˆ
ECCV2018 Deep Virtual Stereo Odometry:Leveraging Deep Depth Prediction for Monocular Direct Sparse Odometry TUM πŸ™ˆ
2018 Self-improving visual odometry Magic Leap, Inc. πŸ™ˆ

2019

Conference Tittle code Author mark
ICLR2019 BA-NET: DENSE BUNDLE ADJUSTMENT NETWORKS Simon Fraser University πŸ™ˆ
TartanVO: A Generalizable Learning-based VO link Carnegie Mellon University πŸ™ˆ
IROS D2VO: Monocular Deep Direct Visual Odometry πŸ™ˆ

2020

Conference Tittle code Author mark
ECCV2020 Pseudo RGB-D for Self-Improving Monocular SLAM and Depth Prediction IIIT-Delhi πŸ™ˆ
CVPR2020 VOLDOR: Visual Odometry from Log-logistic Dense Optical flow Residuals Stevens Institute of Technology πŸ™ˆ
2021 Generalizing to the Open World: Deep Visual Odometry with Online Adaptation Peking University πŸ™ˆ
ICRA2021 SA-LOAM: Semantic-aided LiDAR SLAM with Loop Closure Zhejiang University πŸ™ˆ

Light-Filed-based-depth

Conference Tittle code Author mark
TPAMI2021 Revisiting Light Field Rendering with Deep Anti-Aliasing Neural Network Northeastern University πŸ™ˆ
CVPR2021 Differentiable Diffusion for Dense Depth Estimation from Multi-view Images Brown University πŸ™ˆ
IROS2021 Unsupervised Learning of Depth Estimation and Visual Odometry for Sparse Light Field Cameras Brown University πŸ™ˆ
2021 Occlusion-aware Unsupervised Learning of Depth from 4-D Light Fields University of Sydney πŸ™ˆ

6-depth-estimation-and-complementation

Conference Tittle code Author mark
Sparse Auxiliary Networks for Unified Monocular Depth Prediction and Completion Vitor Toyota Research Institute (TRI) πŸ™ˆ
3DV2019 Enhancing self-supervised monocular depth estimation with traditional visual odometry Univrses AB πŸ™ˆ
ECCV2020 S3Net: Semantic-aware self-supervised depth estimation with monocular videos and synthetic data UCSD πŸ™ˆ
Pytorch implementation of "A simple neural network module for relational reasoning" (Relational Networks)

Pytorch implementation of Relational Networks - A simple neural network module for relational reasoning Implemented & tested on Sort-of-CLEVR task. So

Kim Heecheol 800 Dec 05, 2022
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Gustavo Rosa 30 Jan 04, 2023
Joint deep network for feature line detection and description

SOLDΒ² - Self-supervised Occlusion-aware Line Description and Detection This repository contains the implementation of the paper: SOLDΒ² : Self-supervis

Computer Vision and Geometry Lab 427 Dec 27, 2022
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
The mini-AlphaStar (mini-AS, or mAS) - mini-scale version (non-official) of the AlphaStar (AS)

A mini-scale reproduction code of the AlphaStar program. Note: the original AlphaStar is the AI proposed by DeepMind to play StarCraft II.

Ruo-Ze Liu 216 Jan 04, 2023
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
3D position tracking for soccer players with multi-camera videos

This repo contains a full pipeline to support 3D position tracking of soccer players, with multi-view calibrated moving/fixed video sequences as inputs.

Yuchang Jiang 72 Dec 27, 2022
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article imagesβ€”consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
RoMa: A lightweight library to deal with 3D rotations in PyTorch.

RoMa: A lightweight library to deal with 3D rotations in PyTorch. RoMa (which stands for Rotation Manipulation) provides differentiable mappings betwe

NAVER 90 Dec 27, 2022
CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing

CapsuleVOS This is the code for the ICCV 2019 paper CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing. Arxiv Link: https://a

53 Oct 27, 2022
Image inpainting using Gaussian Mixture Models

dmfa_inpainting Source code for: MisConv: Convolutional Neural Networks for Missing Data (to be published at WACV 2022) Estimating conditional density

Marcin PrzewiΔ™ΕΊlikowski 8 Oct 09, 2022
Python Algorithm Interview Book Review

파이썬 μ•Œκ³ λ¦¬μ¦˜ 인터뷰 μ±… 리뷰 리뷰 IT λŒ€κΈ°μ—…μ— λ“€μ–΄κ°€κ³  싢은 λͺ©ν‘œκ°€ μžˆλ‹€. λ‚΄κ°€ κΏˆκΏ”μ˜¨ νšŒμ‚¬μ—μ„œ μΌν•˜λŠ” μ‚¬λžŒλ“€μ˜ λͺ¨μŠ΅μ„ 보면 λ©‹μžˆλ‹€κ³  생각이 λ“€κ³  λ‚˜μ˜ λͺ©ν‘œμ— λŒ€ν•œ 열망이 κ°•ν•΄μ§€λŠ” 것 κ°™λ‹€. 미래의 핡심 사업 쀑 ν•˜λ‚˜μΈ SW 뢀뢄을 이끌고 λ°œμ „μ‹œν‚€λŠ” μš°λ¦¬λ‚˜λΌμ˜ I

SharkBSJ 1 Dec 14, 2021
Beancount-mercury - Beancount importer for Mercury Startup Checking

beancount-mercury beancount-mercury provides an Importer for converting CSV expo

Michael Lynch 4 Oct 31, 2022
Xintao 1.4k Dec 25, 2022
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
Open-source implementation of Google Vizier for hyper parameters tuning

Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w

tobe 1.5k Jan 04, 2023
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.

Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU.

Phil Wang 2.3k Jan 09, 2023
Personal project about genus-0 meshes, spherical harmonics and a cow

How to transform a cow into spherical harmonics ? Spot the cow, from Keenan Crane's blog Context In the field of Deep Learning, training on images or

3 Aug 22, 2022
CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement

CBREN This is the Pytorch implementation for our IEEE TCSVT paper : CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhanceme

Zhao Hengrun 3 Nov 04, 2022