Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Overview

Physion: Evaluating Physical Prediction from Vision in Humans and Machines

Animation of the 8 scenarios

This repo contains code and data to reproduce the results in our paper, Physion: Evaluating Physical Prediction from Vision in Humans and Machines. Please see below for details about how to download the Physion dataset, replicate our modeling & human experiments, and statistical analyses to reproduce our results.

  1. Downloading the Physion dataset
  2. Dataset generation
  3. Modeling experiments
  4. Human experiments
  5. Comparing models and humans

Downloading the Physion dataset

Downloading the Physion test set (a.k.a. stimuli)

PhysionTest-Core (270 MB)

PhysionTest-Core is all you need to evaluate humans and models on exactly the same test stimuli used in our paper.

It contains eight directories, one for each scenario type (e.g., collide, contain, dominoes, drape, drop, link, roll, support).

Each of these directories contains three subdirectories:

  • maps: Contains PNG segmentation maps for each test stimulus, indicating location of agent object in red and patient object in yellow.
  • mp4s: Contains the MP4 video files presented to human participants. The agent and patient objects appear in random colors.
  • mp4s-redyellow: Contains the MP4 video files passed into models. The agent and patient objects consistently appear in red and yellow, respectively.

Download URL: https://physics-benchmarking-neurips2021-dataset.s3.amazonaws.com/Physion.zip.

PhysionTest-Complete (380 GB)

PhysionTest-Complete is what you want if you need more detailed metadata for each test stimulus.

Each stimulus is encoded in an HDF5 file containing comprehensive information regarding depth, surface normals, optical flow, and segmentation maps associated with each frame of each trial, as well as other information about the physical states of objects at each time step.

Download URL: https://physics-benchmarking-neurips2021-dataset.s3.amazonaws.com/PhysionTestHDF5.tar.gz.

You can also download the testing data for individual scenarios from the table in the next section.

Downloading the Physion training set

Downloading PhysionTrain-Dynamics

PhysionTrain-Dynamics contains the full dataset used to train the dynamics module of models benchmarked in our paper. It consists of approximately 2K stimuli per scenario type.

Download URL (770 MB): https://physics-benchmarking-neurips2021-dataset.s3.amazonaws.com/PhysionTrainMP4s.tar.gz

Downloading PhysionTrain-Readout

PhysionTrain-Readout contains a separate dataset used for training the object-contact prediction (OCP) module for models pretrained on the PhysionTrain-Dynamics dataset. It consists of 1K stimuli per scenario type.

The agent and patient objects in each of these readout stimuli consistently appear in red and yellow, respectively (as in the mp4s-redyellow examples from PhysionTest-Core above).

NB: Code for using these readout sets to benchmark any pretrained model (not just models trained on the Physion training sets) will be released prior to publication.

Download URLs for complete PhysionTrain-Dynamics and PhysionTrain-Readout:

Scenario Dynamics Training Set Readout Training Set Test Set
Dominoes Dominoes_dynamics_training_HDF5s Dominoes_readout_training_HDF5s Dominoes_testing_HDF5s
Support Support_dynamics_training_HDF5s Support_readout_training_HDF5s Support_testing_HDF5s
Collide Collide_dynamics_training_HDF5s Collide_readout_training_HDF5s Collide_testing_HDF5s
Contain Contain_dynamics_training_HDF5s Contain_readout_training_HDF5s Contain_testing_HDF5s
Drop Drop_dynamics_training_HDF5s Drop_readout_training_HDF5s Drop_testing_HDF5s
Roll Roll_dynamics_training_HDF5s Roll_readout_training_HDF5s Roll_testing_HDF5s
Link Link_dynamics_training_HDF5s Link_readout_training_HDF5s Link_testing_HDF5s
Drape Drape_dynamics_training_HDF5s Drape_readout_training_HDF5s Drape_testing_HDF5s

Dataset generation

This repo depends on outputs from tdw_physics.

Specifically, tdw_physics is used to generate the dataset of physical scenarios (a.k.a. stimuli), including both the training datasets used to train physical-prediction models, as well as test datasets used to measure prediction accuracy in both physical-prediction models and human participants.

Instructions for using the ThreeDWorld simulator to regenerate datasets used in our work can be found here. Links for downloading the Physion testing, training, and readout fitting datasets can be found here.

Modeling experiments

The modeling component of this repo depends on the physopt repo. The physopt repo implements an interface through which a wide variety of physics prediction models from the literature (be they neural networks or otherwise) can be adapted to accept the inputs provided by our training and testing datasets and produce outputs for comparison with our human measurements.

The physopt also contains code for model training and evaluation. Specifically, physopt implements three train/test procols:

  • The only protocol, in which each candidate physics model architecture is trained -- using that model's native loss function as specified by the model's authors -- separately on each of the scenarios listed above (e.g. "dominoes", "support", &c). This produces eight separately-trained models per candidate architecture (one for each scenario). Each of these separate models are then tested in comparison to humans on the testing data for that scenario.
  • A all protocol, in which each candidate physics architecture is trained on mixed data from all of the scenarios simultaneously (again, using that model's native loss function). This single model is then tested and compared to humans separately on each scenario.
  • A all-but-one protocol, in which each candidate physics architecture is trained on mixed data drawn for all but one scenario -- separately for all possible choices of the held-out scenario. This produces eight separately-trained models per candidate architecture (one for each held-out scenario). Each of these separate models are then tested in comparison to humans on the testing data for that scenario.

Results from each of the three protocols are separately compared to humans (as described below in the section on comparison of humans to models). All model-human comparisons are carried using a representation-learning paradigm, in which models are trained on their native loss functions (as encoded by the original authors of the model). Trained models are then evaluated on the specific physion red-object-contacts-yellow-zone prediction task. This evaluation is carried by further training a "readout", implemented as a linear logistic regression. Readouts are always trained in a per-scenario fashion.

Currently, physopt implements the following specific physics prediction models:

Model Name Our Code Link Original Paper Description
SVG Denton and Fergus 2018 Image-like latent
OP3 Veerapaneni et. al. 2020
CSWM Kipf et. al. 2020
RPIN Qi et. al. 2021
pVGG-mlp
pVGG-lstm
pDEIT-mlp Touvron et. al. 2020
pDEIT-lstm
GNS Sanchez-Gonzalez et. al. 2020
GNS-R
DPI Li et. al. 2019

Human experiments

This repo contains code to conduct the human behavioral experiments reported in this paper, as well as analyze the resulting data from both human and modeling experiments.

The details of the experimental design and analysis plan are documented in our study preregistration contained within this repository. The format for this preregistration is adapted from the templates provided by the Open Science Framework for our studies, and put under the same type of version control as the rest of the codebase for this project.

Here is what each main directory in this repo contains:

  • experiments: This directory contains code to run the online human behavioral experiments reported in this paper. More detailed documentation of this code can be found in the README file nested within the experiments subdirectory.
  • analysis (aka notebooks): This directory contains our analysis jupyter/Rmd notebooks. This repo assumes you have also imported model evaluation results from physopt.
  • results: This directory contains "intermediate" results of modeling/human experiments. It contains three subdirectories: csv, plots, and summary.
    • /results/csv/ contains csv files containing tidy dataframes with "raw" data.
    • /results/plots/ contains .pdf/.png plots, a selection of which are then polished and formatted for inclusion in the paper using Adobe Illustrator.
    • Important: Before pushing any csv files containing human behavioral data to a public code repository, triple check that this data is properly anonymized. This means no bare AMT Worker ID's or Prolific participant IDs.
  • stimuli: This directory contains any download/preprocessing scripts for data (a.k.a. stimuli) that are the inputs to human behavioral experiments. This repo assumes you have generated stimuli using tdw_physics. This repo uses code in this directory to upload stimuli to AWS S3 and generate metadata to control the timeline of stimulus presentation in the human behavioral experiments.
  • utils: This directory is meant to contain any files containing general helper functions.

Comparing models and humans

The results reported in this paper can be reproduced by running the Jupyter notebooks contained in the analysis directory.

  1. Downloading results. To download the "raw" human and model prediction behavior, please navigate to the analysis directory and execute the following command at the command line: python download_results.py. This script will fetch several CSV files and download them to subdirectories within results/csv. If this does not work, please download this zipped folder (csv) and move it to the results directory: https://physics-benchmarking-neurips2021-dataset.s3.amazonaws.com/model_human_results.zip.
  2. Reproducing analyses. To reproduce the key analyses reported in the paper, please run the following notebooks in this sequence:
    • summarize_human_model_behavior.ipynb: The purpose of this notebook is to:
      • Apply preprocessing to human behavioral data
      • Visualize distribution and compute summary statistics over human physical judgments
      • Visualize distribution and compute summary statistics over model physical judgments
      • Conduct human-model comparisons
      • Output summary CSVs that can be used for further statistical modeling & create publication-quality visualizations
    • inference_human_model_behavior.ipynb: The purpose of this notebook is to:
      • Visualize human and model prediction accuracy (proportion correct)
      • Visualize average-human and model agreement (RMSE)
      • Visualize human-human and model-human agreement (Cohen's kappa)
      • Compare performance between models
    • paper_plots.ipynb: The purpose of this notebook is to create publication-quality figures for inclusion in the paper.
Owner
Cognitive Tools Lab
reverse engineering the human cognitive toolkit
Cognitive Tools Lab
An onlinel learning to rank python codebase.

OLTR Online learning to rank python codebase. The code related to Pairwise Differentiable Gradient Descent (ranker/PDGDLinearRanker.py) is copied from

ielab 5 Jul 18, 2022
A scikit-learn-compatible module for estimating prediction intervals.

MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourit

588 Jan 04, 2023
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023
Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Riemannian Geometry for Molecular Surface Approximation (RGMolSA) Introduction Ligand-based virtual screening aims to reduce the cost and duration of

11 Nov 15, 2022
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:

29 Nov 18, 2022
The 3rd place solution for competition

The 3rd place solution for competition "Lyft Motion Prediction for Autonomous Vehicles" at Kaggle Team behind this solution: Artsiom Sanakoyeu [Homepa

Artsiom 104 Nov 22, 2022
Learning Optical Flow from a Few Matches (CVPR 2021)

Learning Optical Flow from a Few Matches This repository contains the source code for our paper: Learning Optical Flow from a Few Matches CVPR 2021 Sh

Shihao Jiang (Zac) 159 Dec 16, 2022
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)

Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati

Emirhan BULUT 28 Dec 04, 2021
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022
MBPO (paper: When to trust your model: Model-based policy optimization) in offline RL settings

offline-MBPO This repository contains the code of a version of model-based RL algorithm MBPO, which is modified to perform in offline RL settings Pape

LxzGordon 1 Oct 24, 2021
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning 🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 19, 2021
CS583: Deep Learning

CS583: Deep Learning

Shusen Wang 2.6k Dec 30, 2022
This is a vision-based 3d model manipulation and control UI

Manipulation of 3D Models Using Hand Gesture This program allows user to manipulation 3D models (.obj format) with their hands. The project support bo

Cortic Technology Corp. 43 Oct 23, 2022