Bolt Online Learning Toolbox

Related tags

Deep Learningbolt
Overview

Bolt Online Learning Toolbox

Bolt features discriminative learning of linear predictors (e.g. SVM or Logistic Regression) using fast online learning algorithms. Bolt is aimed at large-scale, high-dimensional and sparse machine-learning problems. In particular, problems encountered in information retrieval and natural language processing.

Bolt features:

  • Fast learning based on stochastic gradient descent (plain and via projected (sub-)gradients).
  • Different loss functions for classification (hinge, log, modified huber) and regression (OLS, huber).
  • Different penalties (L2, L1, and elastic-net).
  • Simple, yet powerful commandline interface similar to SVM^light.
  • Python bindings, feature vectors encoded as Numpy arrays.

Furthermore, Bolt provides support for generalized linear models for multi-class classification. Currently, it supports the following multi-class learning algorithms:

  • One-versus-All strategy for binary classifiers.
  • Multinomial Logistic Regression (aka MaxEnt) via SGD.
  • Averaged Perceptron [Freund, Y. and Schapire, R. E., 1998].

The toolkit is written in Python [1], the critical sections are C-extensions written in Cython [2]. It makes heavy use of Numpy [3], a numeric computing library for Python.

Requirements

To install Bolt you need:

  • Python 2.5 or 2.6
  • C-compiler (tested with gcc 4.3.3)
  • Numpy (>= 1.1)

If you want to modify *.pyx files you also need cython (>=0.11.2).

Installation

To clone the repository run,

git clone git://github.com/pprett/bolt.git

To build bolt simply run,

python setup.py build

To install bolt on your system, use

python setup.py install

Documentation

For detailed documentation see http://pprett.github.com/bolt/.

References

[1] http://www.python.org

[2] http://www.cython.org

[3] http://numpy.scipy.org

[Freund, Y. and Schapire, R. E., 1998] Large margin classification using the perceptron algorithm. In Machine Learning, 37, 277-296.

[Shwartz, S. S., Singer, Y., and Srebro, N., 2007] Pegasos: Primal estimated sub-gradient solver for svm. In Proceedings of ICML '07.

[Tsuruoka, Y., Tsujii, J., and Ananiadou, S., 2009] Stochastic gradient descent training for l1-regularized log-linear models with cumulative penalty. In Proceedings of the AFNLP/ACL '09.

[Zhang, T., 2004] Solving large scale linear prediction problems using stochastic gradient descent algorithms. In Proceedings of ICML '04.

[Zou, H., and Hastie, T., 2005] Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B, 67 (2), 301-320.

[ICCV'21] Pri3D: Can 3D Priors Help 2D Representation Learning?

Pri3D: Can 3D Priors Help 2D Representation Learning? [ICCV 2021] Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-tr

Ji Hou 124 Jan 06, 2023
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub 🤗⚡️

hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i

Nathan Raw 27 Dec 14, 2022
PyTorch implementation of popular datasets and models in remote sensing

PyTorch Remote Sensing (torchrs) (WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Re

isaac 222 Dec 28, 2022
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
Code for Environment Dynamics Decomposition (ED2).

ED2 Code for Environment Dynamics Decomposition (ED2). Installation Follow the installation in MBPO and Dreamer. Usage First follow the SD2 method for

0 Aug 10, 2021
😊 Python module for face feature changing

PyWarping Python module for face feature changing Installation pip install pywarping If you get an error: No such file or directory: 'cmake': 'cmake',

Dopevog 10 Sep 10, 2021
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec

HumaticsLAB 31 Oct 10, 2022
Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]

Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan

Jian Zhang 84 Dec 09, 2022
WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction"

BiRTE WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction" Requirements The main requirements are: py

9 Dec 27, 2022
METER: Multimodal End-to-end TransformER

METER Code and pre-trained models will be publicized soon. Citation @article{dou2021meter, title={An Empirical Study of Training End-to-End Vision-a

Zi-Yi Dou 257 Jan 06, 2023
Repo for EchoVPR: Echo State Networks for Visual Place Recognition

EchoVPR Repo for EchoVPR: Echo State Networks for Visual Place Recognition Currently under development Dirs: data: pre-collected hidden representation

Anil Ozdemir 4 Oct 04, 2022
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation

MatConvNet implementation of the FCN models for semantic segmentation This package contains an implementation of the FCN models (training and evaluati

VLFeat.org 175 Feb 18, 2022
A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
Library for time-series-forecasting-as-a-service.

TIMEX TIMEX (referred in code as timexseries) is a framework for time-series-forecasting-as-a-service. Its main goal is to provide a simple and generi

Alessandro Falcetta 8 Jan 06, 2023
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022