Auto-Encoding Score Distribution Regression for Action Quality Assessment

Related tags

Deep LearningDAE-AQA
Overview

DAE-AQA

It is an open source program reference to paper Auto-Encoding Score Distribution Regression for Action Quality Assessment. DAE Structure

1.Introduction

DAE is a model for action quality assessment(AQA). It takes both advantages of regression algorithms and label distribution learning (LDL). Specifically, it encodes videos into distributions and uses the reparameterization trick in variational auto-encoders (VAE) to sample scores, which establishes a more accurate mapping between video and score. It can be appled to many scenarios. e.g, judgment of accuracy of an operation or score estimation of an diving athlete’s performance.

2.Datasets

MTL-AQA dataset

MTL-AQA dataset was orignially presented in the paper What and How Well You Performed? A Multitask Learning Approach to Action Quality Assessment (CVPR 2019) [arXiv], where the authors provided the YouTube links of untrimmed long videos and the corresponding annotations at here. The processed MTL-AQA dataset(Frames) can be downloaded through the following links:

1.[Google Drive]

2.[Baidu Drive](Password:SEU1)

The whole data structure should be:

DAE_AQA
├── data
|  └── frames
|  └── info
...

JIGSAWS dataset

JIGSAWS dataset was presented in the paper Jhu-isi gesture and skill assessment working set (jigsaws): A surgical activity dataset for human motion modeling (MICCAI workshop 2014), where the raw videos could be downloaded at here. We're typographing this part of the code, and we'll release it soon. The whole data structure is same as MTL-AQA. The processed JIGSAWS dataset(Frames) can be downloaded through the following links:

1.[Google Drive]

2.[Baidu Drive](Password:SEU1)

3.Training

training DAE model:

$ python DAE.py --log_info=DAE --num_workers=16 --gpu=0 --train_batch_size=8 --test_batch_size=32 --num_epochs=100

training DAE-MT model:

$ python DAE_MT.py --log_info=DAE-MT --num_workers=16 --gpu=0 --train_batch_size=8 --test_batch_size=32 --num_epochs=100

All default parameters are set in config.py. Considering that the memory of video processing on GPU is quite large, we suggest using small batch for training.

4.Testing

We provided a pre-trained DAE-MT model weight with a correlation coefficient of 0.9449 on MTL-AQA test dataset. You can download it through the following links:

1.[Google Drive]

2.[Baidu Drive](Password:SEU1)

CONTACT US:

If you have any questiones or meet any bugs, please contact us!

E-mail: [email protected]

A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perform basic tasks.

AI_Personal_Voice_Assistant_Using_Python A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perf

Chumui Tripura 1 Oct 30, 2021
Implementation of association rules mining algorithms (Apriori|FPGrowth) using python.

Association Rules Mining Using Python Implementation of association rules mining algorithms (Apriori|FPGrowth) using python. As a part of hw1 code in

Pre 2 Nov 10, 2021
Title: Graduate-Admissions-Predictor

The purpose of this project is create a predictive model capable of identifying the probability of a person securing an admit based on their personal profile parameters. Simplified visualisations hav

Akarsh Singh 1 Jan 26, 2022
Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO)

KernelFunctionalOptimisation Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO) We have conducted all our experiments

2 Jun 29, 2022
Training vision models with full-batch gradient descent and regularization

Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin

Jonas Geiping 32 Jan 06, 2023
A Python package for time series augmentation

tsaug tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to conn

Arundo Analytics 278 Jan 01, 2023
Computational Pathology Toolbox developed by TIA Centre, University of Warwick.

TIA Toolbox Computational Pathology Toolbox developed at the TIA Centre Getting Started All Users This package is for those interested in digital path

Tissue Image Analytics (TIA) Centre 156 Jan 08, 2023
Regression Metrics Calculation Made easy for tensorflow2 and scikit-learn

Regression Metrics Installation To install the package from the PyPi repository you can execute the following command: pip install regressionmetrics I

Ashish Patel 11 Dec 16, 2022
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

RSNA AI Deep Learning Lab 2021 Intro Welcome Deep Learners! This document provides all the information you need to participate in the RSNA AI Deep Lea

RSNA 65 Dec 16, 2022
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022
The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines.

The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines. It includes tools for downloading pipelines and their dependencies and tools for measuring their performace

8 Dec 04, 2022
🔅 Shapash makes Machine Learning models transparent and understandable by everyone

🎉 What's new ? Version New Feature Description Tutorial 1.6.x Explainability Quality Metrics To help increase confidence in explainability methods, y

MAIF 2.1k Dec 27, 2022
Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

Erdene-Ochir Tuguldur 22 Nov 30, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
Empowering journalists and whistleblowers

Onymochat Empowering journalists and whistleblowers Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host

Samrat Dutta 19 Sep 02, 2022
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

105 Nov 07, 2022
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022