Auto-Encoding Score Distribution Regression for Action Quality Assessment

Related tags

Deep LearningDAE-AQA
Overview

DAE-AQA

It is an open source program reference to paper Auto-Encoding Score Distribution Regression for Action Quality Assessment. DAE Structure

1.Introduction

DAE is a model for action quality assessment(AQA). It takes both advantages of regression algorithms and label distribution learning (LDL). Specifically, it encodes videos into distributions and uses the reparameterization trick in variational auto-encoders (VAE) to sample scores, which establishes a more accurate mapping between video and score. It can be appled to many scenarios. e.g, judgment of accuracy of an operation or score estimation of an diving athlete’s performance.

2.Datasets

MTL-AQA dataset

MTL-AQA dataset was orignially presented in the paper What and How Well You Performed? A Multitask Learning Approach to Action Quality Assessment (CVPR 2019) [arXiv], where the authors provided the YouTube links of untrimmed long videos and the corresponding annotations at here. The processed MTL-AQA dataset(Frames) can be downloaded through the following links:

1.[Google Drive]

2.[Baidu Drive](Password:SEU1)

The whole data structure should be:

DAE_AQA
├── data
|  └── frames
|  └── info
...

JIGSAWS dataset

JIGSAWS dataset was presented in the paper Jhu-isi gesture and skill assessment working set (jigsaws): A surgical activity dataset for human motion modeling (MICCAI workshop 2014), where the raw videos could be downloaded at here. We're typographing this part of the code, and we'll release it soon. The whole data structure is same as MTL-AQA. The processed JIGSAWS dataset(Frames) can be downloaded through the following links:

1.[Google Drive]

2.[Baidu Drive](Password:SEU1)

3.Training

training DAE model:

$ python DAE.py --log_info=DAE --num_workers=16 --gpu=0 --train_batch_size=8 --test_batch_size=32 --num_epochs=100

training DAE-MT model:

$ python DAE_MT.py --log_info=DAE-MT --num_workers=16 --gpu=0 --train_batch_size=8 --test_batch_size=32 --num_epochs=100

All default parameters are set in config.py. Considering that the memory of video processing on GPU is quite large, we suggest using small batch for training.

4.Testing

We provided a pre-trained DAE-MT model weight with a correlation coefficient of 0.9449 on MTL-AQA test dataset. You can download it through the following links:

1.[Google Drive]

2.[Baidu Drive](Password:SEU1)

CONTACT US:

If you have any questiones or meet any bugs, please contact us!

E-mail: [email protected]

The official implementation of the CVPR2021 paper: Decoupled Dynamic Filter Networks

Decoupled Dynamic Filter Networks This repo is the official implementation of CVPR2021 paper: "Decoupled Dynamic Filter Networks". Introduction DDF is

F.S.Fire 180 Dec 30, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
Video-Music Transformer

VMT Video-Music Transformer (VMT) is an attention-based multi-modal model, which generates piano music for a given video. Paper https://arxiv.org/abs/

Chin-Tung Lin 5 Jul 13, 2022
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model Baris Gecer 1, Binod Bhattarai 1

Baris Gecer 190 Dec 29, 2022
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
OpenCV, MediaPipe Pose Estimation, Affine Transform for Icon Overlay

Yoga Pose Identification and Icon Matching Project Goal Detect yoga poses performed by a user and overlay a corresponding icon image. Running the main

Anna Garverick 1 Dec 03, 2021
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
A toolkit for Lagrangian-based constrained optimization in Pytorch

Cooper About Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of

Cooper 34 Jan 01, 2023
Implementation of FSGNN

FSGNN Implementation of FSGNN. For more details, please refer to our paper Experiments were conducted with following setup: Pytorch: 1.6.0 Python: 3.8

19 Dec 05, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 36 Oct 31, 2022
deep_image_prior_extension

Code for "Is Deep Image Prior in Need of a Good Education?" Project page: https://jleuschn.github.io/docs.educated_deep_image_prior/. Supplementary Ma

riccardo barbano 7 Jan 09, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

59 Feb 25, 2022
PoseCamera is python based SDK for human pose estimation through RGB webcam.

PoseCamera PoseCamera is python based SDK for human pose estimation through RGB webcam. Install install posecamera package through pip pip install pos

WonderTree 7 Jul 20, 2021