Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

Overview

0. Introduction

This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

Notes

The network topologies and the trained models used in the paper are not open-sourced. One can create synthetic topologies according to the problem formulation in the paper or modify the code for their own use case.

1. Environment config

AWS instance configurations

  • AMI image: "Deep Learning AMI (Ubuntu 16.04) Version 43.0 - ami-0774e48892bd5f116"
  • for First-stage: g4dn.4xlarge; Threads 16 in gurobi.env
  • for others (ILP, ILP-heur, Second-stage): m5zn.12xlarge; Threads 8 in gurobi.env

Step 0: download the git repo

Step 1: install Linux dependencies

sudo apt-get update
sudo apt-get install build-essential libopenmpi-dev libboost-all-dev

Step 2: install Gurobi

cd 
   
    /
./gurobi.sh
source ~/.bashrc

   

Step 3: setup && start conda environment with python3.7.7

If you use the AWS Deep Learning AMI, conda is preinstalled.

conda create --name 
   
     python=3.7.7
conda activate 
    

    
   

Step 4: install python dependencies in the conda env

cd 
   
    /spinninup
pip install -e .
pip install networkx pulp pybind11 xlrd==1.2.0

   

Step 5: compile C++ program with pybind11

cd 
   
    /source/c_solver
./compile.sh

   

2. Content

  • source
    • c_solver: C++ implementation with Gurobi APIs for ILP solver and network plan evaluator
    • planning: ILP and ILP-heur implementation
    • results: store the provided trained models and solutions, and the training log
    • rl: the implementations of Critic-Actor, RL environment and RL solver
    • simulate: python classes of flow, spof, and traffic matrix
    • topology: python classes of network topology (both optical layer and IP layer)
    • test.py: the main script used to reproduce results
  • spinningup
  • gurobi.sh
    • used to install Gurobi solver

3. Reproduce results (for SIGCOMM'21 artifact evaluation)

Notes

  • Some data points are time-consuming to get (i.e., First-stage for A-0, A-0.25, A-0.5, A-0.75 in Figure 8 and B, C, D, E in Figure 9). We provide pretrained models in /source/results/trained/ / , which will be loaded by default.
  • We recommend distributing different data points and differetnt experiments on multiple AWS instances to run simultaneously.
  • The default epoch_num for Figure 10, 11 and 12 is set to be 1024, to guarantee the convergence. The training process can be terminated manually if convergence is observed.

How to reproduce

  • cd /source
  • Figure 7: python test.py fig_7 , epoch_num can be set smaller than 10 (e.g. 2) to get results faster.
  • Figure 8: python test.py single_dp_fig8 produces one data point at a time (the default adjust_factor is 1).
    • For example, python test.py single_dp_fig8 ILP 0.0 runs ILP algorithm for A-0.
    • Pretrained models will be loaded by default if provided in source/results/trained/. To train from scratch which is NOT RECOMMENDED, run python test.py single_dp_fig8 False
  • Figure 9&13: python test.py single_dp_fig9 produces one data point at a time.
    • For example, python test.py single_dp_fig9 E NeuroPlan runs NeuroPlan (First-stage) for topology E with the pretrained model. To train from scratch which is NOT RECOMMENDED, run python test.py single_dp_fig9 E NeuroPlan False.
    • python test.py second_stage can load the solution from the first stage in and run second-stage with relax_factor= on topo . For example, python test.py second_stage D "results/ /opt_topo/***.txt" 1.5
    • we also provide our results of First-stage in results/trained/ / .txt , which can be used to run second-stage directly. For example, python test.py second_stage C "results/trained/C/C.txt" 1.5
  • Figure 10: python test.py fig_10 .
    • adjust_factor={0.0, 0.5, 1.0}, num_gnn_layer={0, 2, 4}
    • For example, python test.py fig_10 0.5 2 runs NeuroPlan with 2-layer GNNs for topology A-0.5
  • Figure 11: python test.py fig_11 .
    • adjust_factor={0.0, 0.5, 1.0}, mlp_hidden_size={64, 256, 512}
    • For example, python test.py fig_11 0.0 512 runs NeuroPlan with hidden_size=512 for topology A-0
  • Figure 12: python test.py fig_12 .
    • adjust_factor={0.0, 0.5, 1.0}, max_unit_per_step={1, 4, 16}
    • For example, python test.py fig_11 1.0 4 runs NeuroPlan with max_unit_per_step=4 for topology A-1

4. Contact

For any question, please contact hzhu at jhu dot edu.

Owner
NetX Group
Computer Systems Research Group at PKU
NetX Group
🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐤 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

Rendi Chevi 156 Jan 09, 2023
Feature extraction made simple with torchextractor

torchextractor: PyTorch Intermediate Feature Extraction Introduction Too many times some model definitions get remorselessly copy-pasted just because

Antoine Broyelle 89 Oct 31, 2022
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device" @ CAD&Graphics2019

PortraitNet Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device". @ CAD&Graphics 2019 Introduction We propose a

265 Dec 01, 2022
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022
The code repository for "RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection" (ACM MM'21)

RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection (ACM MM'21) By Zhuofan Zong, Qianggang Cao, Biao Leng Introduction F

TempleX 9 Jul 30, 2022
Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
Deep learned, hardware-accelerated 3D object pose estimation

Isaac ROS Pose Estimation Overview This repository provides NVIDIA GPU-accelerated packages for 3D object pose estimation. Using a deep learned pose e

NVIDIA Isaac ROS 41 Dec 18, 2022
Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image

Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image This repository is an implementation of the method described in the following pap

21 Dec 15, 2022
Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Ng Kam Woh 71 Dec 22, 2022
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023
Many Class Activation Map methods implemented in Pytorch for CNNs and Vision Transformers. Including Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM and XGrad-CAM

Class Activation Map methods implemented in Pytorch pip install grad-cam ⭐ Tested on many Common CNN Networks and Vision Transformers. ⭐ Includes smoo

Jacob Gildenblat 6.6k Jan 06, 2023
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

wangzhixue 29 Dec 11, 2022